try-gradio / app.py
affandes's picture
Create app.py
d86eb18 verified
raw
history blame contribute delete
839 Bytes
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
checkpoint = "HuggingFaceTB/SmolLM2-135M-Instruct"
device = "cpu" # "cuda" or "cpu"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
def predict(message, history):
history.append({"role": "user", "content": message})
input_text = tokenizer.apply_chat_template(history, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True)
decoded = tokenizer.decode(outputs[0])
response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
return response
demo = gr.ChatInterface(predict, type="messages")
demo.launch()