|
import gradio as gr |
|
import requests |
|
import datadog_api_client |
|
from PIL import Image |
|
|
|
def check_liveness(frame): |
|
url = "http://127.0.0.1:8080/check_liveness" |
|
file = {'file': open(frame, 'rb')} |
|
|
|
r = requests.post(url=url, files=file) |
|
result = r.json().get('face_state').get('result') |
|
|
|
html = None |
|
faces = None |
|
if r.json().get('face_state').get('is_not_front') is not None: |
|
liveness_score = r.json().get('face_state').get('liveness_score') |
|
eye_closed = r.json().get('face_state').get('eye_closed') |
|
is_boundary_face = r.json().get('face_state').get('is_boundary_face') |
|
is_not_front = r.json().get('face_state').get('is_not_front') |
|
is_occluded = r.json().get('face_state').get('is_occluded') |
|
is_small = r.json().get('face_state').get('is_small') |
|
luminance = r.json().get('face_state').get('luminance') |
|
mouth_opened = r.json().get('face_state').get('mouth_opened') |
|
quality = r.json().get('face_state').get('quality') |
|
|
|
html = ("<table>" |
|
"<tr>" |
|
"<th>Face State</th>" |
|
"<th>Value</th>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Result</td>" |
|
"<td>{result}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Liveness Score</td>" |
|
"<td>{liveness_score}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Quality</td>" |
|
"<td>{quality}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Luminance</td>" |
|
"<td>{luminance}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Is Small</td>" |
|
"<td>{is_small}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Is Boundary</td>" |
|
"<td>{is_boundary_face}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Is Not Front</td>" |
|
"<td>{is_not_front}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Face Occluded</td>" |
|
"<td>{is_occluded}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Eye Closed</td>" |
|
"<td>{eye_closed}</td>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Mouth Opened</td>" |
|
"<td>{mouth_opened}</td>" |
|
"</tr>" |
|
"</table>".format(liveness_score=liveness_score, quality=quality, luminance=luminance, is_small=is_small, is_boundary_face=is_boundary_face, |
|
is_not_front=is_not_front, is_occluded=is_occluded, eye_closed=eye_closed, mouth_opened=mouth_opened, result=result)) |
|
|
|
else: |
|
html = ("<table>" |
|
"<tr>" |
|
"<th>Face State</th>" |
|
"<th>Value</th>" |
|
"</tr>" |
|
"<tr>" |
|
"<td>Result</td>" |
|
"<td>{result}</td>" |
|
"</tr>" |
|
"</table>".format(result=result)) |
|
|
|
try: |
|
image = Image.open(frame) |
|
|
|
for face in r.json().get('faces'): |
|
x1 = face.get('x1') |
|
y1 = face.get('y1') |
|
x2 = face.get('x2') |
|
y2 = face.get('y2') |
|
|
|
if x1 < 0: |
|
x1 = 0 |
|
if y1 < 0: |
|
y1 = 0 |
|
if x2 >= image.width: |
|
x2 = image.width - 1 |
|
if y2 >= image.height: |
|
y2 = image.height - 1 |
|
|
|
face_image = image.crop((x1, y1, x2, y2)) |
|
face_image_ratio = face_image.width / float(face_image.height) |
|
resized_w = int(face_image_ratio * 150) |
|
resized_h = 150 |
|
|
|
face_image = face_image.resize((int(resized_w), int(resized_h))) |
|
|
|
if faces is None: |
|
faces = face_image |
|
else: |
|
new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80)) |
|
|
|
new_image.paste(faces,(0,0)) |
|
new_image.paste(face_image,(faces.width + 10, 0)) |
|
faces = new_image.copy() |
|
except: |
|
pass |
|
|
|
return [faces, html] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# KBY-AI |
|
We offer SDKs for Face Recognition, Face Liveness Detection(Face Anti-Spoofing), and ID Card Recognition.<br/> |
|
Besides that, we can provide several AI models and development services in machine learning. |
|
|
|
## Simple Installation & Simple API |
|
``` |
|
sudo docker pull kbyai/face-liveness-detection:latest |
|
sudo docker run -e LICENSE="xxxxx" -p 8080:8080 -p 9000:9000 kbyai/face-liveness-detection:latest |
|
``` |
|
## KYC Verification Demo |
|
https://github.com/kby-ai/KYC-Verification |
|
""" |
|
) |
|
with gr.TabItem("Face Liveness Detection"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
live_image_input = gr.Image(type='filepath') |
|
gr.Examples(['live_examples/1.jpg', 'live_examples/2.jpg', 'live_examples/3.jpg', 'live_examples/4.jpg'], |
|
inputs=live_image_input) |
|
check_liveness_button = gr.Button("Check Liveness") |
|
with gr.Column(): |
|
liveness_face_output = gr.Image(type="pil").style(height=150) |
|
livness_result_output = gr.HTML() |
|
|
|
check_liveness_button.click(check_liveness, inputs=live_image_input, outputs=[liveness_face_output, livness_result_output]) |
|
|
|
demo.launch(server_name="0.0.0.0", server_port=9000) |