AIAPIendpoints / semantic_seg_model.py
canadianjosieharrison's picture
Upload 11 files
baffb91 verified
raw
history blame
9.64 kB
import torch
from transformers import pipeline, AutoImageProcessor, SegformerForSemanticSegmentation
from typing import List
from PIL import Image, ImageDraw, ImageFont, ImageChops, ImageMorph
import numpy as np
import datasets
def find_center_of_non_black_pixels(image):
# Get image dimensions
width, height = image.size
# Iterate over the pixels to find the center of the non-black pixels
total_x = 0
total_y = 0
num_non_black_pixels = 0
top, left, bottom, right = height, width, 0, 0
for y in range(height):
for x in range(width):
pixel = image.getpixel((x, y))
if pixel != (255, 255, 255): # Non-black pixel
total_x += x
total_y += y
num_non_black_pixels += 1
top = min(top, y)
left = min(left, x)
bottom = max(bottom, y)
right = max(right, x)
bbox_width = right - left
bbox_height = bottom - top
bbox_size = max(bbox_height, bbox_width)
# Calculate the center of the non-black pixels
if num_non_black_pixels == 0:
return None # No non-black pixels found
center_x = total_x // num_non_black_pixels
center_y = total_y // num_non_black_pixels
return (center_x, center_y), bbox_size
def create_centered_image(image, center, bbox_size):
# Get image dimensions
width, height = image.size
# Calculate the offset to center the non-black pixels in the new image
offset_x = bbox_size // 2 - center[0]
offset_y = bbox_size // 2 - center[1]
# Create a new image with the same size as the original image
new_image = Image.new("RGB", (bbox_size, bbox_size), color=(255, 255, 255))
# Paste the non-black pixels onto the new image
new_image.paste(image, (offset_x, offset_y))
return new_image
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[180, 120, 20],
[180, 120, 120],
[6, 230, 230],
[80, 50, 50],
[4, 200, 3],
[120, 120, 80],
[140, 140, 140],
[204, 5, 255],
[230, 230, 230],
[4, 250, 7],
[224, 5, 255],
[235, 255, 7],
[150, 5, 61],
[120, 120, 70],
[8, 255, 51],
[255, 6, 82],
[143, 255, 140],
[204, 255, 4],
[255, 51, 7],
[204, 70, 3],
[0, 102, 200],
[61, 230, 250],
[255, 6, 51],
[11, 102, 255],
[255, 7, 71],
[255, 9, 224],
[9, 7, 230],
[220, 220, 220],
[255, 9, 92],
[112, 9, 255],
[8, 255, 214],
[7, 255, 224],
[255, 184, 6],
[10, 255, 71],
[255, 41, 10],
[7, 255, 255],
[224, 255, 8],
[102, 8, 255],
[255, 61, 6],
[255, 194, 7],
[255, 122, 8],
[0, 255, 20],
[255, 8, 41],
[255, 5, 153],
[6, 51, 255],
[235, 12, 255],
[160, 150, 20],
[0, 163, 255],
[140, 140, 140],
[250, 10, 15],
[20, 255, 0],
[31, 255, 0],
[255, 31, 0],
[255, 224, 0],
[153, 255, 0],
[0, 0, 255],
[255, 71, 0],
[0, 235, 255],
[0, 173, 255],
[31, 0, 255],
[11, 200, 200],
[255, 82, 0],
[0, 255, 245],
[0, 61, 255],
[0, 255, 112],
[0, 255, 133],
[255, 0, 0],
[255, 163, 0],
[255, 102, 0],
[194, 255, 0],
[0, 143, 255],
[51, 255, 0],
[0, 82, 255],
[0, 255, 41],
[0, 255, 173],
[10, 0, 255],
[173, 255, 0],
[0, 255, 153],
[255, 92, 0],
[255, 0, 255],
[255, 0, 245],
[255, 0, 102],
[255, 173, 0],
[255, 0, 20],
[255, 184, 184],
[0, 31, 255],
[0, 255, 61],
[0, 71, 255],
[255, 0, 204],
[0, 255, 194],
[0, 255, 82],
[0, 10, 255],
[0, 112, 255],
[51, 0, 255],
[0, 194, 255],
[0, 122, 255],
[0, 255, 163],
[255, 153, 0],
[0, 255, 10],
[255, 112, 0],
[143, 255, 0],
[82, 0, 255],
[163, 255, 0],
[255, 235, 0],
[8, 184, 170],
[133, 0, 255],
[0, 255, 92],
[184, 0, 255],
[255, 0, 31],
[0, 184, 255],
[0, 214, 255],
[255, 0, 112],
[92, 255, 0],
[0, 224, 255],
[112, 224, 255],
[70, 184, 160],
[163, 0, 255],
[153, 0, 255],
[71, 255, 0],
[255, 0, 163],
[255, 204, 0],
[255, 0, 143],
[0, 255, 235],
[133, 255, 0],
[255, 0, 235],
[245, 0, 255],
[255, 0, 122],
[255, 245, 0],
[10, 190, 212],
[214, 255, 0],
[0, 204, 255],
[20, 0, 255],
[255, 255, 0],
[0, 153, 255],
[0, 41, 255],
[0, 255, 204],
[41, 0, 255],
[41, 255, 0],
[173, 0, 255],
[0, 245, 255],
[71, 0, 255],
[122, 0, 255],
[0, 255, 184],
[0, 92, 255],
[184, 255, 0],
[0, 133, 255],
[255, 214, 0],
[25, 194, 194],
[102, 255, 0],
[92, 0, 255],
]
def label_to_color_image(label, colormap):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
LABEL_NAMES = np.asarray(labels_list)
LABEL_TO_INDEX = {label: i for i, label in enumerate(labels_list)}
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP, colormap)
FONT = ImageFont.truetype("Arial.ttf", 1000)
def lift_black_value(image, lift_amount):
"""
Increase the black values of an image by a specified amount.
Parameters:
image (PIL.Image): The image to adjust.
lift_amount (int): The amount to increase the brightness of the darker pixels.
Returns:
PIL.Image: The adjusted image with lifted black values.
"""
# Ensure that we don't go out of the 0-255 range for any pixel value
def adjust_value(value):
return min(255, max(0, value + lift_amount))
# Apply the point function to each channel
return image.point(adjust_value)
torch.set_grad_enabled(False)
DEVICE = 'cuda' if torch.cuda.is_available() else "cpu"
# MIN_AREA_THRESHOLD = 0.01
pipe = pipeline("image-segmentation", model="nvidia/segformer-b5-finetuned-ade-640-640")
def segmentation_inference(
image_rgb_pil: Image.Image,
savepath: str
):
outputs = pipe(image_rgb_pil, points_per_batch=32)
for i, prediction in enumerate(outputs):
label = prediction['label']
if (label == "floor") | (label == "wall") | (label == "ceiling"):
mask = prediction['mask']
## Save mask
label_savepath = savepath + label + str(i) + '.png'
fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
cutout_image = Image.composite(image_rgb_pil, fill_image, mask)
# Crop mask
center, bbox_size = find_center_of_non_black_pixels(cutout_image)
if center is not None:
centered_image = create_centered_image(cutout_image, center, bbox_size)
centered_image.save(label_savepath)
## Inspect masks
# inverted_mask = ImageChops.invert(mask)
# mask_adjusted = lift_black_value(inverted_mask, 100)
# color_index = LABEL_TO_INDEX[label]
# color = tuple(FULL_COLOR_MAP[color_index][0])
# fill_image = Image.new("RGB", image_rgb_pil.size, color=color)
# image_rgb_pil = Image.composite(image_rgb_pil, fill_image, mask_adjusted)
# Display the final image
# image_rgb_pil.show()
def online_segmentation_inference(
image_rgb_pil: Image.Image
):
outputs = pipe(image_rgb_pil, points_per_batch=32)
# Create an image dictionary
image_dict = {"image": [], "label":[]}
for i, prediction in enumerate(outputs):
label = prediction['label']
if (label == "floor") | (label == "wall") | (label == "ceiling"):
mask = prediction['mask']
fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
cutout_image = Image.composite(image_rgb_pil, fill_image, mask)
# Crop mask
center, bbox_size = find_center_of_non_black_pixels(cutout_image)
if center is not None:
centered_image = create_centered_image(cutout_image, center, bbox_size)
# Add image to image dictionary
image_dict["image"].append(centered_image)
image_dict["label"].append(label)
segmented_ds = datasets.Dataset.from_dict(image_dict).cast_column("image", datasets.Image())
return segmented_ds