nvidia_denoiser / util.py
azamat's picture
Init
33e3a91
import os
import time
import functools
import numpy as np
from math import cos, pi, floor, sin
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from stft_loss import MultiResolutionSTFTLoss
def flatten(v):
return [x for y in v for x in y]
def rescale(x):
return (x - x.min()) / (x.max() - x.min())
def find_max_epoch(path):
"""
Find latest checkpoint
Returns:
maximum iteration, -1 if there is no (valid) checkpoint
"""
files = os.listdir(path)
epoch = -1
for f in files:
if len(f) <= 4:
continue
if f[-4:] == '.pkl':
number = f[:-4]
try:
epoch = max(epoch, int(number))
except:
continue
return epoch
def print_size(net, keyword=None):
"""
Print the number of parameters of a network
"""
if net is not None and isinstance(net, torch.nn.Module):
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in module_parameters])
print("{} Parameters: {:.6f}M".format(
net.__class__.__name__, params / 1e6), flush=True, end="; ")
if keyword is not None:
keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name]
params = sum([np.prod(p.size()) for p in keyword_parameters])
print("{} Parameters: {:.6f}M".format(
keyword, params / 1e6), flush=True, end="; ")
print(" ")
####################### lr scheduler: Linear Warmup then Cosine Decay #############################
# Adapted from https://github.com/rosinality/vq-vae-2-pytorch
# Original Copyright 2019 Kim Seonghyeon
# MIT License (https://opensource.org/licenses/MIT)
def anneal_linear(start, end, proportion):
return start + proportion * (end - start)
def anneal_cosine(start, end, proportion):
cos_val = cos(pi * proportion) + 1
return end + (start - end) / 2 * cos_val
class Phase:
def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
self.start, self.end = start, end
self.n_iter = n_iter
self.anneal_fn = anneal_fn
self.n = cur_iter
def step(self):
self.n += 1
return self.anneal_fn(self.start, self.end, self.n / self.n_iter)
def reset(self):
self.n = 0
@property
def is_done(self):
return self.n >= self.n_iter
class LinearWarmupCosineDecay:
def __init__(
self,
optimizer,
lr_max,
n_iter,
iteration=0,
divider=25,
warmup_proportion=0.3,
phase=('linear', 'cosine'),
):
self.optimizer = optimizer
phase1 = int(n_iter * warmup_proportion)
phase2 = n_iter - phase1
lr_min = lr_max / divider
phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}
cur_iter_phase1 = iteration
cur_iter_phase2 = max(0, iteration - phase1)
self.lr_phase = [
Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
]
if iteration < phase1:
self.phase = 0
else:
self.phase = 1
def step(self):
lr = self.lr_phase[self.phase].step()
for group in self.optimizer.param_groups:
group['lr'] = lr
if self.lr_phase[self.phase].is_done:
self.phase += 1
if self.phase >= len(self.lr_phase):
for phase in self.lr_phase:
phase.reset()
self.phase = 0
return lr
####################### model util #############################
def std_normal(size):
"""
Generate the standard Gaussian variable of a certain size
"""
return torch.normal(0, 1, size=size).cuda()
def weight_scaling_init(layer):
"""
weight rescaling initialization from https://arxiv.org/abs/1911.13254
"""
w = layer.weight.detach()
alpha = 10.0 * w.std()
layer.weight.data /= torch.sqrt(alpha)
layer.bias.data /= torch.sqrt(alpha)
@torch.no_grad()
def sampling(net, noisy_audio):
"""
Perform denoising (forward) step
"""
return net(noisy_audio)
def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs):
"""
Loss function in CleanUNet
Parameters:
net: network
X: training data pair (clean audio, noisy_audio)
ell_p: \ell_p norm (1 or 2) of the AE loss
ell_p_lambda: factor of the AE loss
stft_lambda: factor of the STFT loss
mrstftloss: multi-resolution STFT loss function
Returns:
loss: value of objective function
output_dic: values of each component of loss
"""
assert type(X) == tuple and len(X) == 2
clean_audio, noisy_audio = X
B, C, L = clean_audio.shape
output_dic = {}
loss = 0.0
# AE loss
denoised_audio = net(noisy_audio)
if ell_p == 2:
ae_loss = nn.MSELoss()(denoised_audio, clean_audio)
elif ell_p == 1:
ae_loss = F.l1_loss(denoised_audio, clean_audio)
else:
raise NotImplementedError
loss += ae_loss * ell_p_lambda
output_dic["reconstruct"] = ae_loss.data * ell_p_lambda
if stft_lambda > 0:
sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1))
loss += (sc_loss + mag_loss) * stft_lambda
output_dic["stft_sc"] = sc_loss.data * stft_lambda
output_dic["stft_mag"] = mag_loss.data * stft_lambda
return loss, output_dic