BaseChat / app.py
yuchenlin's picture
update content
a68eabb
raw
history blame
8.5 kB
import gradio as gr
import os
from typing import List
import logging
import urllib.request
from utils import model_name_mapping, urial_template, openai_base_request, chat_template, openai_chat_request
from constant import js_code_label, HEADER_MD, BASE_TO_ALIGNED, MODELS
from openai import OpenAI
import datetime
# add logging info to console
logging.basicConfig(level=logging.INFO)
URIAL_VERSION = "inst_1k_v4.help"
URIAL_URL = f"https://raw.githubusercontent.com/Re-Align/URIAL/main/urial_prompts/{URIAL_VERSION}.txt"
urial_prompt = urllib.request.urlopen(URIAL_URL).read().decode('utf-8')
urial_prompt = urial_prompt.replace("```", '"""') # new version of URIAL uses """ instead of ```
STOP_STRS = ['"""', '# Query:', '# Answer:']
addr_limit_counter = {}
LAST_UPDATE_TIME = datetime.datetime.now()
models = MODELS
# mega_hist = {
# "base": [],
# "aligned": []
# }
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
rp,
model_name,
model_type,
api_key,
request:gr.Request
):
global STOP_STRS, urial_prompt, LAST_UPDATE_TIME, addr_limit_counter
assert model_type in ["base", "aligned"]
# if history:
# if model_type == "base":
# mega_hist["base"] = history
# else:
# mega_hist["aligned"] = history
if model_type == "base":
prompt = urial_template(urial_prompt, history, message)
else:
messages = chat_template(history, message)
# _model_name = "meta-llama/Llama-3-8b-hf"
_model_name = model_name_mapping(model_name)
if api_key and len(api_key) == 64:
api_key = api_key
else:
api_key = None
# headers = request.headers
# if already 24 hours passed, reset the counter
if datetime.datetime.now() - LAST_UPDATE_TIME > datetime.timedelta(days=1):
addr_limit_counter = {}
LAST_UPDATE_TIME = datetime.datetime.now()
host_addr = request.client.host
if host_addr not in addr_limit_counter:
addr_limit_counter[host_addr] = 0
if addr_limit_counter[host_addr] > 100:
return "You have reached the limit of 100 requests for today. Please use your own API key."
if model_type == "base":
infer_request = openai_base_request(prompt=prompt, model=_model_name,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
repetition_penalty=rp,
stop=STOP_STRS, api_key=api_key)
else:
infer_request = openai_chat_request(messages=messages, model=_model_name,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
repetition_penalty=rp,
stop=STOP_STRS, api_key=api_key)
addr_limit_counter[host_addr] += 1
logging.info(f"Requesting chat completion from OpenAI API with model {_model_name}")
logging.info(f"addr_limit_counter: {addr_limit_counter}; Last update time: {LAST_UPDATE_TIME};")
response = ""
for msg in infer_request:
# print(msg.choices[0].delta.keys())
if hasattr(msg.choices[0], "delta"):
# Note: 'ChoiceDelta' object may or may not be not subscriptable
if "content" in msg.choices[0].delta:
token = msg.choices[0].delta["content"]
else:
token = msg.choices[0].delta.content
else:
token = msg.choices[0].text
if model_type == "base":
should_stop = False
for _stop in STOP_STRS:
if _stop in response + token:
should_stop = True
break
if should_stop:
break
if token is None:
continue
response += token
if model_type == "base":
if response.endswith('\n"'):
response = response[:-1]
elif response.endswith('\n""'):
response = response[:-2]
yield history + [(message, response)]
# mega_hist[model_type].append((message, response))
# yield mega_hist[model_type]
def load_models(base_model_name):
print(f"base_model_name={base_model_name}")
out_box = [gr.Chatbot(), gr.Chatbot(), gr.Dropdown()]
out_box[0] = (gr.update(label=f"Chat with Base LLM: {base_model_name}"))
aligned_model_name = BASE_TO_ALIGNED[base_model_name]
out_box[1] = (gr.update(label=f"Chat with Aligned LLM: {aligned_model_name}"))
out_box[2] = (gr.update(value=aligned_model_name, interactive=False))
return out_box[0], out_box[1], out_box[2]
def clear_fn():
# mega_hist["base"] = []
# mega_hist["aligned"] = []
return None, None, None
with gr.Blocks(gr.themes.Soft(), js=js_code_label) as demo:
api_key = gr.Textbox(label="πŸ”‘ APIKey", placeholder="Enter your Together/Hyperbolic API Key. Leave it blank to use our key with limited usage.", type="password", elem_id="api_key", visible=False)
gr.Markdown(HEADER_MD)
with gr.Row():
chat_a = gr.Chatbot(height=500, label="Chat with Base LLMs via URIAL")
chat_b = gr.Chatbot(height=500, label="Chat with Aligned LLMs")
with gr.Group():
with gr.Row():
with gr.Column(scale=1.5):
message = gr.Textbox(label="Prompt", placeholder="Enter your message here")
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
left_model_choice = gr.Dropdown(label="Base Model", choices=models, interactive=True)
right_model_choice = gr.Textbox(label="Aligned Model", placeholder="xxx", visible=True)
with gr.Row():
btn = gr.Button("πŸš€ Chat")
# gr.Markdown("---")
with gr.Row():
stop_btn = gr.Button("⏸️ Stop")
clear_btn = gr.Button("πŸ” Clear")
with gr.Row():
gr.Markdown(">> - We thank for the support of Llama-3.1-405B from [Hyperbolic AI](https://hyperbolic.xyz/). ")
with gr.Column(scale=1):
with gr.Accordion("βš™οΈ Params for **Base** LLM", open=True):
with gr.Row():
max_tokens_1 = gr.Slider(label="Max tokens", value=256, minimum=0, maximum=2048, step=16, interactive=True, visible=True)
temperature_1 = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
with gr.Row():
top_p_1 = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rp_1 = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.1)
with gr.Accordion("βš™οΈ Params for **Aligned** LLM", open=True):
with gr.Row():
max_tokens_2 = gr.Slider(label="Max tokens", value=256, minimum=0, maximum=2048, step=16, interactive=True, visible=True)
temperature_2 = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
with gr.Row():
top_p_2 = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rp_2 = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
left_model_choice.change(load_models, [left_model_choice], [chat_a, chat_b, right_model_choice])
model_type_left = gr.Textbox(visible=False, value="base")
model_type_right = gr.Textbox(visible=False, value="aligned")
go1 = btn.click(respond, [message, chat_a, max_tokens_1, temperature_1, top_p_1, rp_1, left_model_choice, model_type_left, api_key], chat_a)
go2 = btn.click(respond, [message, chat_b, max_tokens_2, temperature_2, top_p_2, rp_2, right_model_choice, model_type_right, api_key], chat_b)
stop_btn.click(None, None, None, cancels=[go1, go2])
clear_btn.click(clear_fn, None, [message, chat_a, chat_b])
if __name__ == "__main__":
demo.launch(show_api=False)