Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.prompts import PromptTemplate | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint | |
from langchain_core.output_parsers import JsonOutputParser | |
from langdetect import detect | |
import time | |
# Initialize the LLM and other components | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
task="text-generation", | |
max_new_tokens=4096, | |
temperature=0.5, | |
do_sample=False, | |
) | |
llm_engine_hf = ChatHuggingFace(llm=llm) | |
# Update the template to extract topic information | |
template_classify = ''' | |
Please read the following text written in {LANG} language and extract the main topics discussed in it. | |
You can list more than one topic or topics sentence by sentence. List the topics clearly. | |
<text> | |
{TEXT} | |
</text> | |
''' | |
template_json = ''' | |
Your task is to read the following extracted topics and convert them into JSON format using 'Topics' as the key. | |
<text> | |
{RESPONSE} | |
</text> | |
The final response should be in this format: | |
{{"Topics": ["Topic1", "Topic2", ...]}} | |
''' | |
json_output_parser = JsonOutputParser() | |
# Define the classify_text function | |
def classify_text(text): | |
global llm | |
start = time.time() | |
lang = detect(text) | |
prompt_classify = PromptTemplate( | |
template=template_classify, | |
input_variables=["LANG", "TEXT"] | |
) | |
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang) | |
classify = llm.invoke(formatted_prompt) | |
prompt_json = PromptTemplate( | |
template=template_json, | |
input_variables=["RESPONSE"] | |
) | |
formatted_prompt = template_json.format(RESPONSE=classify) | |
response = llm.invoke(formatted_prompt) | |
parsed_output = json_output_parser.parse(response) | |
end = time.time() | |
duration = end - start | |
return parsed_output, duration | |
# Create the Gradio interface | |
def gradio_app(text): | |
classification, time_taken = classify_text(text) | |
return classification, f"Time taken: {time_taken:.2f} seconds" | |
def create_gradio_interface(): | |
with gr.Blocks() as iface: | |
text_input = gr.Textbox(label="Text to Classify") | |
output_text = gr.Textbox(label="Extracted Topics") | |
time_taken = gr.Textbox(label="Time Taken (seconds)") | |
submit_btn = gr.Button("Extract Topics") | |
submit_btn.click(fn=gradio_app, inputs=text_input, outputs=[output_text, time_taken]) | |
iface.launch() | |
if __name__ == "__main__": | |
create_gradio_interface() | |