File size: 8,771 Bytes
78d359b e34d5e8 a25f677 78d359b e34d5e8 933c40c 78d359b 933c40c a25f677 933c40c e34d5e8 933c40c 78d359b a25f677 78d359b 933c40c e34d5e8 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b a25f677 933c40c 78d359b a25f677 933c40c 78d359b a25f677 933c40c 78d359b 933c40c a25f677 78d359b a25f677 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c 78d359b 933c40c a25f677 933c40c a25f677 933c40c 78d359b a25f677 78d359b 933c40c 78d359b 933c40c e34d5e8 933c40c a25f677 933c40c e34d5e8 933c40c 78d359b e34d5e8 933c40c e34d5e8 78d359b e34d5e8 78d359b e34d5e8 933c40c e34d5e8 78d359b e34d5e8 63d8dec adf5040 e34d5e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
from gradio_image_prompter import ImagePrompter
import torch
import numpy as np
from sam2.sam2_image_predictor import SAM2ImagePredictor
from uuid import uuid4
import os
from huggingface_hub import upload_folder
from PIL import Image as PILImage
from datasets import Dataset, Features, Array2D, Image
import shutil
import random
from datasets import load_dataset
MODEL = "facebook/sam2-hiera-large"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
DESTINATION_DS = "amaye15/object-segmentation"
# login(os.getenv("TOKEN"))
IMAGE = None
MASKS = None
MASKED_IMAGES = None
INDEX = None
ds_name = ["amaye15/product_labels"] # "amaye15/Products-10k", "amaye15/receipts"
choices = ["test", "train"]
max_len = None
ds_stream = load_dataset(random.choice(ds_name), streaming=True)
ds_split = ds_stream[random.choice(choices)]
ds_iter = ds_split.iter(batch_size=1)
for idx, val in enumerate(ds_iter):
max_len = idx
def prompter(prompts):
image = np.array(prompts["image"]) # Convert the image to a numpy array
points = prompts["points"] # Get the points from prompts
# Perform inference with multimask_output=True
with torch.inference_mode():
PREDICTOR.set_image(image)
input_point = [[point[0], point[1]] for point in points]
input_label = [1] * len(points) # Assuming all points are foreground
masks, _, _ = PREDICTOR.predict(
point_coords=input_point, point_labels=input_label, multimask_output=True
)
# Prepare individual images with separate overlays
overlay_images = []
for i, mask in enumerate(masks):
print(f"Predicted Mask {i+1}:", mask.shape)
red_mask = np.zeros_like(image)
red_mask[:, :, 0] = mask.astype(np.uint8) * 255 # Apply the red channel
red_mask = PILImage.fromarray(red_mask)
# Convert the original image to a PIL image
original_image = PILImage.fromarray(image)
# Blend the original image with the red mask
blended_image = PILImage.blend(original_image, red_mask, alpha=0.5)
# Add the blended image to the list
overlay_images.append(blended_image)
global IMAGE, MASKS, MASKED_IMAGES
IMAGE, MASKS = image, masks
MASKED_IMAGES = [np.array(img) for img in overlay_images]
return overlay_images[0], overlay_images[1], overlay_images[2], masks
def select_mask(
selected_mask_index,
mask1,
mask2,
mask3,
):
masks = [mask1, mask2, mask3]
global INDEX
INDEX = selected_mask_index
return masks[selected_mask_index]
def save_selected_mask(image, mask, output_dir="output"):
output_dir = os.path.join(os.getcwd(), output_dir)
os.makedirs(output_dir, exist_ok=True)
folder_id = str(uuid4())
folder_path = os.path.join(output_dir, folder_id)
os.makedirs(folder_path, exist_ok=True)
data_path = os.path.join(folder_path, "data.parquet")
data = {
"image": IMAGE,
"masked_image": MASKED_IMAGES[INDEX],
"mask": MASKS[INDEX],
}
features = Features(
{
"image": Image(),
"masked_image": Image(),
"mask": Array2D(
dtype="int64", shape=(MASKS[INDEX].shape[0], MASKS[INDEX].shape[1])
),
}
)
ds = Dataset.from_list([data], features=features)
ds.to_parquet(data_path)
upload_folder(
folder_path=output_dir,
repo_id=DESTINATION_DS,
repo_type="dataset",
)
shutil.rmtree(folder_path)
iframe_code = """## Success! ππ€β
You've successfully contributed to the dataset.
Please note that because new data has been added to the dataset, it may take a couple of minutes to render.
Check it out here:
[Object Segmentation Dataset](https://huggingface.co/datasets/amaye15/object-segmentation)
"""
return iframe_code
def get_random_image():
"""Get a random image from the dataset."""
global max_len
random_idx = random.choice(range(max_len))
image_data = list(ds_split.skip(random_idx).take(1))[0]["pixel_values"]
formatted_image = {
"image": np.array(image_data),
"points": [],
} # Create the correct format
return formatted_image
# Define the Gradio Blocks app
with gr.Blocks() as demo:
gr.Markdown("# Object Segmentation- Image Point Collector and Mask Overlay Tool")
gr.Markdown(
"""
This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image or select a random image from a dataset and interactively generate segmentation masks based on multiple points you select on the image.
### How It Works:
1. **Upload or Select an Image**: You can either upload your own image or use a random image from the dataset.
2. **Point Selection**: Click on the image to indicate points of interest. You can add multiple points, and these will be used collectively to generate segmentation masks using SAM2.
3. **Mask Generation**: The app will generate up to three different segmentation masks for the selected points, each displayed separately with a red overlay.
4. **Mask Selection**: Carefully review the generated masks and select the one that best fits your needs. **It's important to choose the correct mask, as your selection will be saved and used for further processing.**
5. **Save and Contribute**: Save the selected mask along with the image to a dataset, contributing to a shared dataset on Hugging Face.
**Disclaimer**: All images and masks you work with will be collected and stored in a public dataset. Please ensure that you are comfortable with your selections and the data you provide before saving.
This tool is particularly useful for creating precise object segmentation masks for computer vision tasks, such as training models or generating labeled datasets.
"""
)
with gr.Row():
with gr.Column():
image_input = gr.State()
# Input: ImagePrompter for uploaded image
upload_image_input = ImagePrompter(show_label=False)
random_image_button = gr.Button("Use Random Image")
submit_button = gr.Button("Submit")
with gr.Row():
with gr.Column():
# Outputs: Up to 3 overlay images
image_output_1 = gr.Image(show_label=False)
with gr.Column():
image_output_2 = gr.Image(show_label=False)
with gr.Column():
image_output_3 = gr.Image(show_label=False)
# Dropdown for selecting the correct mask
with gr.Row():
mask_selector = gr.Radio(
label="Select the correct mask",
choices=["Mask 1", "Mask 2", "Mask 3"],
type="index",
)
# selected_mask_output = gr.Image(show_label=False)
save_button = gr.Button("Save Selected Mask and Image")
iframe_display = gr.Markdown()
# Logic for the random image button
random_image_button.click(
fn=get_random_image,
inputs=None,
outputs=upload_image_input, # Pass the formatted random image to ImagePrompter
)
# Logic to use uploaded image
upload_image_input.change(
fn=lambda img: img, inputs=upload_image_input, outputs=image_input
)
# Define the action triggered by the submit button
submit_button.click(
fn=prompter,
inputs=upload_image_input, # The final image input (whether uploaded or random)
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
show_progress=True,
)
# Define the action triggered by mask selection
mask_selector.change(
fn=select_mask,
inputs=[mask_selector, image_output_1, image_output_2, image_output_3],
outputs=gr.State(),
)
# Define the action triggered by the save button
save_button.click(
fn=save_selected_mask,
inputs=[gr.State(), gr.State()],
outputs=iframe_display,
show_progress=True,
)
# Launch the Gradio app
demo.launch()
# with gr.Column():
# source = gr.Textbox(label="Source Dataset")
# source_display = gr.Markdown()
# iframe_display = gr.HTML()
# source.change(
# save_dataset_name,
# inputs=(gr.State("source_dataset"), source),
# outputs=(source_display, iframe_display),
# )
# with gr.Column():
# destination = gr.Textbox(label="Destination Dataset")
# destination_display = gr.Markdown()
# destination.change(
# save_dataset_name,
# inputs=(gr.State("destination_dataset"), destination),
# outputs=destination_display,
# )
|