yuancwang
init
5548515
# Pretrained Models Dependency
The models dependency of Amphion are as follows (sort alphabetically):
- [Pretrained Models Dependency](#pretrained-models-dependency)
- [Amphion Singing BigVGAN](#amphion-singing-bigvgan)
- [Amphion Speech HiFi-GAN](#amphion-speech-hifi-gan)
- [ContentVec](#contentvec)
- [WeNet](#wenet)
- [Whisper](#whisper)
- [RawNet3](#rawnet3)
The instructions about how to download them is displayed as follows.
## Amphion Singing BigVGAN
We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The fine-tuned checkpoint can be downloaded [here](https://cuhko365-my.sharepoint.com/:f:/g/personal/222042021_link_cuhk_edu_cn/EtiHh5JZ0_xGlYbyLLSoqBgBe9kI5q3ROY-SvBqefae-IA?e=dk4Pqa). You need to download the `400000.pt` and `args.json` files into `Amphion/pretrained/bigvgan`:
```
Amphion
┣ pretrained
┃ ┣ bivgan
┃ ┃ ┣ 400000.pt
┃ ┃ ┣ args.json
```
## Amphion Speech HiFi-GAN
We trained our HiFi-GAN pretrained model with 685 hours speech data. Which can be downloaded [here](https://cuhko365-my.sharepoint.com/:f:/g/personal/xueliumeng_cuhk_edu_cn/Ei24hGJO_PVBopjhKje1uzEBqfhV9h89HoLrOoy9K8tzGg?e=ka7MCO). You need to download the whole folder of `hifigan_speech` into `Amphion/pretrained/hifigan`.
```
Amphion
┣ pretrained
┃ ┣ hifigan
┃ ┃ ┣ hifigan_speech
┃ ┃ ┃ ┣ log
┃ ┃ ┃ ┣ result
┃ ┃ ┃ ┣ checkpoint
┃ ┃ ┃ ┣ args.json
```
## ContentVec
You can download the pretrained ContentVec model [here](https://github.com/auspicious3000/contentvec). Note that we use the `ContentVec_legacy-500 classes` checkpoint. Assume that you download the `checkpoint_best_legacy_500.pt` into the `Amphion/pretrained/contentvec`.
```
Amphion
┣ pretrained
┃ ┣ contentvec
┃ ┃ ┣ checkpoint_best_legacy_500.pt
```
## WeNet
You can download the pretrained WeNet model [here](https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.md). Take the `wenetspeech` pretrained checkpoint as an example, assume you download the `wenetspeech_u2pp_conformer_exp.tar` into the `Amphion/pretrained/wenet`. Unzip it and modify its configuration file as follows:
```sh
cd Amphion/pretrained/wenet
### Unzip the expt dir
tar -xvf wenetspeech_u2pp_conformer_exp.tar.gz
### Specify the updated path in train.yaml
cd 20220506_u2pp_conformer_exp
vim train.yaml
# TODO: Change the value of "cmvn_file" (Line 2) to the absolute path of the `global_cmvn` file. (Eg: [YourPath]/Amphion/pretrained/wenet/20220506_u2pp_conformer_exp/global_cmvn)
```
The final file struture tree is like:
```
Amphion
┣ pretrained
┃ ┣ wenet
┃ ┃ ┣ 20220506_u2pp_conformer_exp
┃ ┃ ┃ ┣ final.pt
┃ ┃ ┃ ┣ global_cmvn
┃ ┃ ┃ ┣ train.yaml
┃ ┃ ┃ ┣ units.txt
```
## Whisper
The official pretrained whisper checkpoints can be available [here](https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/__init__.py#L17). In Amphion, we use the `medium` whisper model by default. You can download it as follows:
```bash
cd Amphion/pretrained
mkdir whisper
cd whisper
wget https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt
```
The final file structure tree is like:
```
Amphion
┣ pretrained
┃ ┣ whisper
┃ ┃ ┣ medium.pt
```
## RawNet3
The official pretrained RawNet3 checkpoints can be available [here](https://huggingface.co/jungjee/RawNet3). You need to download the `model.pt` file and put it in the folder.
The final file structure tree is like:
```
Amphion
┣ pretrained
┃ ┣ rawnet3
┃ ┃ ┣ model.pt
```