Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
17.7 kB
from typing import Dict, List, Optional, Tuple, Union
import torch
import torchaudio
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from modules.wenet_extractor.transducer.predictor import PredictorBase
from modules.wenet_extractor.transducer.search.greedy_search import basic_greedy_search
from modules.wenet_extractor.transducer.search.prefix_beam_search import (
PrefixBeamSearch,
)
from modules.wenet_extractor.transformer.asr_model import ASRModel
from modules.wenet_extractor.transformer.ctc import CTC
from modules.wenet_extractor.transformer.decoder import (
BiTransformerDecoder,
TransformerDecoder,
)
from modules.wenet_extractor.transformer.label_smoothing_loss import LabelSmoothingLoss
from modules.wenet_extractor.utils.common import (
IGNORE_ID,
add_blank,
add_sos_eos,
reverse_pad_list,
)
class Transducer(ASRModel):
"""Transducer-ctc-attention hybrid Encoder-Predictor-Decoder model"""
def __init__(
self,
vocab_size: int,
blank: int,
encoder: nn.Module,
predictor: PredictorBase,
joint: nn.Module,
attention_decoder: Optional[
Union[TransformerDecoder, BiTransformerDecoder]
] = None,
ctc: Optional[CTC] = None,
ctc_weight: float = 0,
ignore_id: int = IGNORE_ID,
reverse_weight: float = 0.0,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
transducer_weight: float = 1.0,
attention_weight: float = 0.0,
) -> None:
assert attention_weight + ctc_weight + transducer_weight == 1.0
super().__init__(
vocab_size,
encoder,
attention_decoder,
ctc,
ctc_weight,
ignore_id,
reverse_weight,
lsm_weight,
length_normalized_loss,
)
self.blank = blank
self.transducer_weight = transducer_weight
self.attention_decoder_weight = 1 - self.transducer_weight - self.ctc_weight
self.predictor = predictor
self.joint = joint
self.bs = None
# Note(Mddct): decoder also means predictor in transducer,
# but here decoder is attention decoder
del self.criterion_att
if attention_decoder is not None:
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, Optional[torch.Tensor]]:
"""Frontend + Encoder + predictor + joint + loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
# Encoder
encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
# predictor
ys_in_pad = add_blank(text, self.blank, self.ignore_id)
predictor_out = self.predictor(ys_in_pad)
# joint
joint_out = self.joint(encoder_out, predictor_out)
# NOTE(Mddct): some loss implementation require pad valid is zero
# torch.int32 rnnt_loss required
rnnt_text = text.to(torch.int64)
rnnt_text = torch.where(rnnt_text == self.ignore_id, 0, rnnt_text).to(
torch.int32
)
rnnt_text_lengths = text_lengths.to(torch.int32)
encoder_out_lens = encoder_out_lens.to(torch.int32)
loss = torchaudio.functional.rnnt_loss(
joint_out,
rnnt_text,
encoder_out_lens,
rnnt_text_lengths,
blank=self.blank,
reduction="mean",
)
loss_rnnt = loss
loss = self.transducer_weight * loss
# optional attention decoder
loss_att: Optional[torch.Tensor] = None
if self.attention_decoder_weight != 0.0 and self.decoder is not None:
loss_att, _ = self._calc_att_loss(
encoder_out, encoder_mask, text, text_lengths
)
# optional ctc
loss_ctc: Optional[torch.Tensor] = None
if self.ctc_weight != 0.0 and self.ctc is not None:
loss_ctc = self.ctc(encoder_out, encoder_out_lens, text, text_lengths)
else:
loss_ctc = None
if loss_ctc is not None:
loss = loss + self.ctc_weight * loss_ctc.sum()
if loss_att is not None:
loss = loss + self.attention_decoder_weight * loss_att.sum()
# NOTE: 'loss' must be in dict
return {
"loss": loss,
"loss_att": loss_att,
"loss_ctc": loss_ctc,
"loss_rnnt": loss_rnnt,
}
def init_bs(self):
if self.bs is None:
self.bs = PrefixBeamSearch(
self.encoder, self.predictor, self.joint, self.ctc, self.blank
)
def _cal_transducer_score(
self,
encoder_out: torch.Tensor,
encoder_mask: torch.Tensor,
hyps_lens: torch.Tensor,
hyps_pad: torch.Tensor,
):
# ignore id -> blank, add blank at head
hyps_pad_blank = add_blank(hyps_pad, self.blank, self.ignore_id)
xs_in_lens = encoder_mask.squeeze(1).sum(1).int()
# 1. Forward predictor
predictor_out = self.predictor(hyps_pad_blank)
# 2. Forward joint
joint_out = self.joint(encoder_out, predictor_out)
rnnt_text = hyps_pad.to(torch.int64)
rnnt_text = torch.where(rnnt_text == self.ignore_id, 0, rnnt_text).to(
torch.int32
)
# 3. Compute transducer loss
loss_td = torchaudio.functional.rnnt_loss(
joint_out,
rnnt_text,
xs_in_lens,
hyps_lens.int(),
blank=self.blank,
reduction="none",
)
return loss_td * -1
def _cal_attn_score(
self,
encoder_out: torch.Tensor,
encoder_mask: torch.Tensor,
hyps_pad: torch.Tensor,
hyps_lens: torch.Tensor,
):
# (beam_size, max_hyps_len)
ori_hyps_pad = hyps_pad
# td_score = loss_td * -1
hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
# used for right to left decoder
r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos, self.ignore_id)
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out,
encoder_mask,
hyps_pad,
hyps_lens,
r_hyps_pad,
self.reverse_weight,
) # (beam_size, max_hyps_len, vocab_size)
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
decoder_out = decoder_out.cpu().numpy()
# r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
# conventional transformer decoder.
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
r_decoder_out = r_decoder_out.cpu().numpy()
return decoder_out, r_decoder_out
def beam_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
beam_size: int = 5,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
ctc_weight: float = 0.3,
transducer_weight: float = 0.7,
):
"""beam search
Args:
speech (torch.Tensor): (batch=1, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
ctc_weight (float): ctc probability weight in transducer
prefix beam search.
final_prob = ctc_weight * ctc_prob + transducer_weight * transducer_prob
transducer_weight (float): transducer probability weight in
prefix beam search
Returns:
List[List[int]]: best path result
"""
self.init_bs()
beam, _ = self.bs.prefix_beam_search(
speech,
speech_lengths,
decoding_chunk_size,
beam_size,
num_decoding_left_chunks,
simulate_streaming,
ctc_weight,
transducer_weight,
)
return beam[0].hyp[1:], beam[0].score
def transducer_attention_rescoring(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
beam_size: int,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
reverse_weight: float = 0.0,
ctc_weight: float = 0.0,
attn_weight: float = 0.0,
transducer_weight: float = 0.0,
search_ctc_weight: float = 1.0,
search_transducer_weight: float = 0.0,
beam_search_type: str = "transducer",
) -> List[List[int]]:
"""beam search
Args:
speech (torch.Tensor): (batch=1, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
ctc_weight (float): ctc probability weight using in rescoring.
rescore_prob = ctc_weight * ctc_prob +
transducer_weight * (transducer_loss * -1) +
attn_weight * attn_prob
attn_weight (float): attn probability weight using in rescoring.
transducer_weight (float): transducer probability weight using in
rescoring
search_ctc_weight (float): ctc weight using
in rnnt beam search (seeing in self.beam_search)
search_transducer_weight (float): transducer weight using
in rnnt beam search (seeing in self.beam_search)
Returns:
List[List[int]]: best path result
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
if reverse_weight > 0.0:
# decoder should be a bitransformer decoder if reverse_weight > 0.0
assert hasattr(self.decoder, "right_decoder")
device = speech.device
batch_size = speech.shape[0]
# For attention rescoring we only support batch_size=1
assert batch_size == 1
# encoder_out: (1, maxlen, encoder_dim), len(hyps) = beam_size
self.init_bs()
if beam_search_type == "transducer":
beam, encoder_out = self.bs.prefix_beam_search(
speech,
speech_lengths,
decoding_chunk_size=decoding_chunk_size,
beam_size=beam_size,
num_decoding_left_chunks=num_decoding_left_chunks,
ctc_weight=search_ctc_weight,
transducer_weight=search_transducer_weight,
)
beam_score = [s.score for s in beam]
hyps = [s.hyp[1:] for s in beam]
elif beam_search_type == "ctc":
hyps, encoder_out = self._ctc_prefix_beam_search(
speech,
speech_lengths,
beam_size=beam_size,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks,
simulate_streaming=simulate_streaming,
)
beam_score = [hyp[1] for hyp in hyps]
hyps = [hyp[0] for hyp in hyps]
assert len(hyps) == beam_size
# build hyps and encoder output
hyps_pad = pad_sequence(
[torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps],
True,
self.ignore_id,
) # (beam_size, max_hyps_len)
hyps_lens = torch.tensor(
[len(hyp) for hyp in hyps], device=device, dtype=torch.long
) # (beam_size,)
encoder_out = encoder_out.repeat(beam_size, 1, 1)
encoder_mask = torch.ones(
beam_size, 1, encoder_out.size(1), dtype=torch.bool, device=device
)
# 2.1 calculate transducer score
td_score = self._cal_transducer_score(
encoder_out,
encoder_mask,
hyps_lens,
hyps_pad,
)
# 2.2 calculate attention score
decoder_out, r_decoder_out = self._cal_attn_score(
encoder_out,
encoder_mask,
hyps_pad,
hyps_lens,
)
# Only use decoder score for rescoring
best_score = -float("inf")
best_index = 0
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp):
score += decoder_out[i][j][w]
score += decoder_out[i][len(hyp)][self.eos]
td_s = td_score[i]
# add right to left decoder score
if reverse_weight > 0:
r_score = 0.0
for j, w in enumerate(hyp):
r_score += r_decoder_out[i][len(hyp) - j - 1][w]
r_score += r_decoder_out[i][len(hyp)][self.eos]
score = score * (1 - reverse_weight) + r_score * reverse_weight
# add ctc score
score = (
score * attn_weight
+ beam_score[i] * ctc_weight
+ td_s * transducer_weight
)
if score > best_score:
best_score = score
best_index = i
return hyps[best_index], best_score
def greedy_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
n_steps: int = 64,
) -> List[List[int]]:
"""greedy search
Args:
speech (torch.Tensor): (batch=1, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[List[int]]: best path result
"""
# TODO(Mddct): batch decode
assert speech.size(0) == 1
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
# TODO(Mddct): forward chunk by chunk
_ = simulate_streaming
# Let's assume B = batch_size
encoder_out, encoder_mask = self.encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
)
encoder_out_lens = encoder_mask.squeeze(1).sum()
hyps = basic_greedy_search(self, encoder_out, encoder_out_lens, n_steps=n_steps)
return hyps
@torch.jit.export
def forward_encoder_chunk(
self,
xs: torch.Tensor,
offset: int,
required_cache_size: int,
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
return self.encoder.forward_chunk(
xs, offset, required_cache_size, att_cache, cnn_cache
)
@torch.jit.export
def forward_predictor_step(
self, xs: torch.Tensor, cache: List[torch.Tensor]
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
assert len(cache) == 2
# fake padding
padding = torch.zeros(1, 1)
return self.predictor.forward_step(xs, padding, cache)
@torch.jit.export
def forward_joint_step(
self, enc_out: torch.Tensor, pred_out: torch.Tensor
) -> torch.Tensor:
return self.joint(enc_out, pred_out)
@torch.jit.export
def forward_predictor_init_state(self) -> List[torch.Tensor]:
return self.predictor.init_state(1, device=torch.device("cpu"))