Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastai.vision.all import * | |
import skimage | |
import re | |
def from_csv(x): | |
try: | |
pattern = '\/([A-Za-z\d]+.jpg)' | |
match = re.findall(pattern,str(x)) | |
# print(match) | |
x = df.loc[df['image'] == match[0]] | |
# print(x) | |
y = x['emotion'].item() # #y=x['label'].values[0] | |
return str(y) | |
except: | |
# print('check these files') | |
# print(x) | |
return 0 | |
learn = load_learner('export.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "EMOTIONAL DAMAGE" | |
description = "Find your true emotions" | |
article="<p style='text-align: center'><a href='https://www.linkedin.com/in/ranjith-azad-506201238/' target='_blank'>Linkedin</a></p>" | |
examples = ['ha.jpg','damu.jpeg','kili.jpg','sad.jpg','fear.jpg','disg.jpg','anger.jpg'] | |
interpretation='default' | |
enable_queue=True | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=5),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() | |