|
import gradio as gr |
|
import pandas as pd |
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection |
|
from PIL import Image, ImageDraw |
|
import torch |
|
|
|
image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small') |
|
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small') |
|
|
|
colors = ["red", |
|
"orange", |
|
"yellow", |
|
"green", |
|
"blue", |
|
"indigo", |
|
"violet", |
|
"brown", |
|
"black", |
|
"slategray", |
|
] |
|
|
|
|
|
WIDTH = 600 |
|
|
|
def detect(image): |
|
width, height = image.size |
|
ratio = float(WIDTH) / float(width) |
|
new_h = height * ratio |
|
|
|
image = image.resize((int(WIDTH), int(new_h)), Image.Resampling.LANCZOS) |
|
|
|
inputs = image_processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
|
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = image_processor.post_process_object_detection(outputs, |
|
threshold=0.9, |
|
target_sizes=target_sizes)[0] |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
counts = {} |
|
|
|
for score, label in zip(results["scores"], results["labels"]): |
|
label_name = model.config.id2label[label.item()] |
|
if label_name not in counts: |
|
counts[label_name] = 0 |
|
counts[label_name] += 1 |
|
|
|
count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])} |
|
label2color = {} |
|
for idx, label in enumerate(count_results): |
|
label2color[label] = colors[idx] |
|
|
|
for label, box in zip(results["labels"], results["boxes"]): |
|
label_name = model.config.id2label[label.item()] |
|
|
|
if label_name in count_results: |
|
box = [round(i, 4) for i in box.tolist()] |
|
x1, y1, x2, y2 = tuple(box) |
|
draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2) |
|
draw.text((x1, y1), label_name, fill="white") |
|
|
|
df = pd.DataFrame({ |
|
'label': [label for label in count_results], |
|
'counts': [counts[label] for label in count_results] |
|
}) |
|
|
|
return image, df, count_results |
|
|
|
demo = gr.Interface( |
|
fn=detect, |
|
examples=["examples/football.jpg", "examples/cats.jpg"], |
|
inputs=[gr.inputs.Image(label="Input image", type="pil")], |
|
outputs=[gr.Image(label="Output image"), gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False), gr.Textbox(show_label=False)], |
|
title="YOLO Object Detection", |
|
cache_examples=False |
|
) |
|
|
|
demo.launch() |