anantgupta129's picture
init spaces
c5a6a24
import sys
import time
from pathlib import Path
from typing import Any, Literal, Optional
import lightning as L
import torch
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy
from tsai_gpt.model import GPT, Block, Config
from tsai_gpt.tokenizer import Tokenizer
from tsai_gpt.utils import (get_default_supported_precision, gptq_quantization,
load_checkpoint)
L.seed_everything(1234)
def multinomial_num_samples_1(probs: torch.Tensor) -> torch.Tensor:
if torch._dynamo.is_compiling():
# Faster alternative to `torch.multinomial(probs, num_samples=1)` that is also CUDAGraph friendly
distribution = torch.empty_like(probs).exponential_(1)
return torch.argmax(probs / distribution, dim=-1, keepdim=True)
return torch.multinomial(probs, num_samples=1)
def sample(
logits: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None
) -> torch.Tensor:
logits = logits[0, -1]
# optionally crop the logits to only the top k options
if top_k is not None:
v, i = torch.topk(logits, min(top_k, logits.size(-1)))
# do not use `torch.where` as in nanogpt because it will repeat top-k collisions
logits = torch.full_like(logits, float("-inf")).scatter_(-1, i, v)
# optionally scale the logits and sample from a probability distribution
if temperature > 0.0:
probs = torch.nn.functional.softmax(logits / temperature, dim=-1)
return multinomial_num_samples_1(probs)
return torch.argmax(logits, dim=-1, keepdim=True)
def next_token(
model: GPT, input_pos: torch.Tensor, x: torch.Tensor, **kwargs: Any
) -> torch.Tensor:
logits = model(x, input_pos)
next = sample(logits, **kwargs)
return next.type_as(x)
@torch.inference_mode()
def generate(
model: GPT,
prompt: torch.Tensor,
max_returned_tokens: int,
*,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
prompt: Tensor of shape (T) with indices of the prompt sequence.
max_returned_tokens: The maximum number of tokens to return (given plus generated).
temperature: Scales the predicted logits by 1 / temperature.
top_k: If specified, only sample among the tokens with the k highest probabilities.
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
"""
T = prompt.size(0)
assert max_returned_tokens > T
if model.max_seq_length < max_returned_tokens - 1:
# rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
# data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
# not support it to avoid negatively impacting the overall speed
raise NotImplementedError(
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
)
device = prompt.device
tokens = [prompt]
input_pos = torch.tensor([T], device=device)
token = next_token(
model,
torch.arange(0, T, device=device),
prompt.view(1, -1),
temperature=temperature,
top_k=top_k,
).clone()
tokens.append(token)
for _ in range(2, max_returned_tokens - T + 1):
token = next_token(
model, input_pos, token.view(1, -1), temperature=temperature, top_k=top_k
).clone()
tokens.append(token)
if token == eos_id:
break
input_pos = input_pos.add_(1)
return torch.cat(tokens)
"""
quantize (Optional[Literal[&quot;bnb.nf4&quot;, &quot;bnb.nf4, optional): quantization method to use. Defaults to None.
- "bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq": 4-bit quantization bitsandbytes
- "bnb.int8": 8-bit quantization bitsandbytes
- "gptq.int4": 4-bit quantization GPTQ
for more details see: https://github.com/facebookresearch/bitsandbytes, https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials/quantize.md
strategy (str, optional): Fabric strategy setting. Defaults to "auto".
devices (int, optional): number of devices to be used. Defaults to 1.
precision (Optional[str], optional): fabic precision settings. Defaults to None.
"""
chptk_path: str = "saved_model/last-iter-015000-ckpt.pth"
tokenizer_path: str = "tokenizer_Llama-2-7b-chat-hf"
quantize: Optional[
Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]
] = None
strategy: str = "auto"
devices: int = 1
precision: Optional[str] = None
precision = precision or get_default_supported_precision(training=False)
plugins = None
if quantize is not None:
if devices > 1:
raise NotImplemented("Multi-GPU quantization is not supported yet.")
if quantize.startswith("bnb."):
if "mixed" in precision:
raise ValueError("Quantization and mixed precision is not supported.")
dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[
precision
]
plugins = BitsandbytesPrecision(quantize[4:], dtype)
precision = None
if strategy == "fsdp":
strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)
fabric = L.Fabric(devices=devices, strategy=strategy, precision=precision, plugins=plugins)
fabric.launch()
tokenizer = Tokenizer(Path("tokenizer_Llama-2-7b-chat-hf"))
config = Config.from_name("pythia-160m")
fabric.print(f"Loading model from {chptk_path}", file=sys.stderr)
t0 = time.perf_counter()
with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
model = GPT(config)
fabric.print(
f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr
)
with fabric.init_tensor():
# enable the kv cache
model.set_kv_cache(batch_size=1)
model.eval()
model = fabric.setup_module(model)
t0 = time.perf_counter()
load_checkpoint(fabric, model, chptk_path)
fabric.print(
f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr
)
def generate_from_prompt(
prompt: str = "",
max_new_tokens: int = 500,
top_k: int = 200,
temperature: float = 0.8,
):
"""Generate text from a prompt using pre-trained model
Args:
prompt (str, optional): Prompt string to be used for generating samples. Defaults to "".
num_samples (int, optional): Number of samples to be generated. Defaults to 1.
max_new_tokens (int, optional): number of generation steps to take. Defaults to 500.
top_k (int, optional): top most preferable tokens to consider in the sampling process. Defaults to 200.
temperature (float, optional): Control randomness for sampelling process. Defaults to 0.8.
"""
encoded = tokenizer.encode(prompt, device=fabric.device)
prompt_length = encoded.size(0)
max_returned_tokens = prompt_length + max_new_tokens
with fabric.init_tensor():
# set the max_seq_length to limit the memory usage to what we need
model.max_seq_length = max_returned_tokens
num_samples: int = 1
for i in range(num_samples):
t0 = time.perf_counter()
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
t = time.perf_counter() - t0
# for block in model.transformer.h:
# block.attn.kv_cache.reset_parameters()
pred = tokenizer.decode(y)
fabric.print(pred)
tokens_generated = y.size(0) - prompt_length
fabric.print(
f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec",
file=sys.stderr,
)
if fabric.device.type == "cuda":
fabric.print(
f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr
)
return pred