Spaces:
Running
Running
title: README | |
emoji: π€ | |
colorFrom: gray | |
colorTo: indigo | |
sdk: static | |
pinned: false | |
Welcome to the official Hugging Face organization for Apple! | |
## Apple Core ML β Build intelligence into your apps | |
[Core ML](https://developer.apple.com/machine-learning/core-ml/) is optimized for on-device performance of a broad variety of model types by leveraging Apple Silicon and minimizing memory footprint and power consumption. | |
* Models | |
- [Depth Anything V2 Core ML](https://huggingface.co/collections/apple/core-ml-depth-anything-66727e780bc71c005763baf9): State-of-the-art depth estimation | |
- [DETR Resnet50 Core ML](https://huggingface.co/apple/coreml-detr-semantic-segmentation): Semantic Segmentation | |
- [FastViT Core ML](https://huggingface.co/collections/apple/core-ml-fastvit-666b782d98d6421a15237897): Image Classification | |
- [Stable Diffusion Core ML](https://huggingface.co/collections/apple/core-ml-stable-diffusion-666b3b0f4b5f3d33c67c6bbe) | |
- [Additional Core ML Model Gallery Models](https://huggingface.co/collections/apple/core-ml-gallery-models-666b66ca4e6657b7d179bc42) | |
# Apple Machine Learning Research | |
Open research to enable the community to deliver amazing experiences that improve the lives of millions of people every day. | |
* Models | |
- OpenELM [Base](https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e) | [Instruct](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca): open, Transformer-based language model. | |
- [MobileCLIP](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Mobile-friendly image-text models. | |
- [DCLM](https://huggingface.co/collections/apple/dclm-66960ebf2400d314ff19018f): State-of-the-art open data language models via dataset curation. | |
- [DFN](https://huggingface.co/collections/apple/dfn-models-data-659ecf85cebd98088a9d9a3b): State-of-the-art open data CLIP models via dataset curation. | |
* Datasets | |
- [FLAIR](https://huggingface.co/datasets/apple/flair): A large image dataset for federated learning. | |
- [DataCompDR](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Improved datasets for training image-text models. | |
* Benchmarks | |
- [TiC-CLIP](https://huggingface.co/collections/apple/tic-clip-666097407ed2edff959276e0): Benchmark for the design of efficient continual learning of image-text models over years | |
# Select Highlights and Other Resources | |
- [Hugging Face CoreML Examples](https://github.com/huggingface/coreml-examples) β Run Core ML models with two lines of code! | |
- [Apple Model Gallery](https://developer.apple.com/machine-learning/models/) | |
- [New features in Core ML Tools](https://apple.github.io/coremltools/docs-guides/source/new-features.html) | |
- [Apple Core ML Stable Diffusion](https://github.com/apple/ml-stable-diffusion) β Library to run Stable Diffusion on Apple Silicon with Core ML. | |
- Hugging Face Blog Posts | |
- [WWDC 24: Running Mistral 7B with Core ML](https://huggingface.co/blog/mistral-coreml) | |
- [Releasing Swift Transformers: Run On-Device LLMs in Apple Devices](https://huggingface.co/blog/swift-coreml-llm) | |
- [Faster Stable Diffusion with Core ML on iPhone, iPad, and Mac](https://huggingface.co/blog/fast-diffusers-coreml) | |
- [Using Stable Diffusion with Core ML on Apple Silicon](https://huggingface.co/blog/diffusers-coreml) | |