Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
from langchain import PromptTemplate, LLMChain
|
2 |
from langchain.llms import GPT4All
|
3 |
-
from langchain.memory import
|
|
|
4 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
5 |
-
import gradio as gr
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
8 |
|
9 |
model_path = hf_hub_download(repo_id="microsoft/DialoGPT-medium", filename="tf_model.h5")
|
10 |
# Load the tokenizer and model
|
@@ -19,7 +20,7 @@ Answer: Let's think step by step."""
|
|
19 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
20 |
|
21 |
# Create a memory module with a maximum capacity of 1000 items
|
22 |
-
memory =
|
23 |
# Callbacks support token-wise streaming
|
24 |
callbacks = [StreamingStdOutCallbackHandler()]
|
25 |
# Verbose is required to pass to the callback manager
|
@@ -30,7 +31,8 @@ llm_chain = LLMChain(prompt=prompt, llm=llm, memory=memory)
|
|
30 |
# Define the Gradio interface
|
31 |
def chatbot_interface(input_text):
|
32 |
response = llm_chain.run(input_text)
|
33 |
-
memory.
|
|
|
34 |
return response
|
35 |
|
36 |
# Define the Gradio app
|
|
|
1 |
from langchain import PromptTemplate, LLMChain
|
2 |
from langchain.llms import GPT4All
|
3 |
+
from langchain.memory import ConversationBufferMemory
|
4 |
+
from langchain.chains import ConversationChain
|
5 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
import gradio as gr
|
9 |
|
10 |
model_path = hf_hub_download(repo_id="microsoft/DialoGPT-medium", filename="tf_model.h5")
|
11 |
# Load the tokenizer and model
|
|
|
20 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
21 |
|
22 |
# Create a memory module with a maximum capacity of 1000 items
|
23 |
+
memory = ConversationBufferMemory()
|
24 |
# Callbacks support token-wise streaming
|
25 |
callbacks = [StreamingStdOutCallbackHandler()]
|
26 |
# Verbose is required to pass to the callback manager
|
|
|
31 |
# Define the Gradio interface
|
32 |
def chatbot_interface(input_text):
|
33 |
response = llm_chain.run(input_text)
|
34 |
+
memory.chat_memory.add_user_message(input_text)
|
35 |
+
memory.chat_memory.add_ai_message(response)
|
36 |
return response
|
37 |
|
38 |
# Define the Gradio app
|