File size: 7,813 Bytes
8fae231 4ad544c b55d194 4ad544c 8fae231 4ad544c bde6df9 4ad544c 6339a18 4ad544c 2c8f67f 4ad544c 26fd786 5837401 26fd786 4ad544c 5837401 4837dad 5837401 4ad544c e91a55e 4ad544c cd490ad 4ad544c e91a55e 4ad544c 2c8f67f 4ad544c 2c8f67f 4ad544c 2c8f67f 4ad544c 5837401 4ad544c 5837401 4ad544c 2c8f67f 5837401 65c585b 5837401 65c585b 5837401 b3cb334 5837401 6db317f 5837401 93ecba8 65c585b 5837401 65c585b 5837401 65c585b 5837401 e91a55e 4ad544c e91a55e 5837401 4ad544c 1601dd1 4ad544c f1f1e3e 4ad544c dad27b3 4ad544c e1d0c17 4ad544c 09984c5 4ad544c 886ce38 4ad544c 7af3767 886ce38 5a9b440 2c8f67f fa44df9 7af3767 26fd786 b3cb334 d26af00 5a9b440 4ad544c b3cb334 4ad544c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#=======================================================================================
# https://huggingface.co/spaces/asigalov61/Imagen-POP-Music-Medley-Diffusion-Transformer
#=======================================================================================
import os
import time as reqtime
import datetime
from pytz import timezone
import torch
from imagen_pytorch import Unet, Imagen, ImagenTrainer
from imagen_pytorch.data import Dataset
import spaces
import gradio as gr
import numpy as np
import random
import tqdm
import TMIDIX
import TPLOTS
from midi_to_colab_audio import midi_to_colab_audio
# =================================================================================================
@spaces.GPU
def Generate_POP_Medley(input_num_medley_comps, input_melody_patch):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Req number of medley compositions:', input_num_medley_comps)
print('Req melody MIDI patch number:', input_melody_patch)
print('=' * 70)
#===============================================================================
# MIDI Images generation
#===============================================================================
print('Loading model...')
DIM = 64
CHANS = 1
TSTEPS = 1000
DEVICE = 'cpu' # 'cuda'
unet = Unet(
dim = DIM,
dim_mults = (1, 2, 4, 8),
num_resnet_blocks = 1,
channels=CHANS,
layer_attns = (False, False, False, True),
layer_cross_attns = False
)
imagen = Imagen(
condition_on_text = False, # this must be set to False for unconditional Imagen
unets = unet,
channels=CHANS,
image_sizes = 128,
timesteps = TSTEPS
)
trainer = ImagenTrainer(
imagen = imagen,
split_valid_from_train = True # whether to split the validation dataset from the training
).to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
print('=' * 70)
trainer.load('Imagen_POP909_64_dim_12638_steps_0.00983_loss.ckpt')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Generating...')
print('=' * 70)
images = trainer.sample(batch_size = input_num_medley_comps, return_pil_images = True)
print('=' * 70)
print('Done!')
print('=' * 70)
print('Processing...')
threshold = 128
imgs_array = []
for i in images:
arr = np.array(i)
farr = np.where(arr < threshold, 0, 1)
imgs_array.append(farr)
print('Done!')
#===============================================================================
print('=' * 70)
print('Converting images to scores...')
medley_compositions_escores = []
for i in imgs_array:
bmatrix = TPLOTS.images_to_binary_matrix([i])
score = TMIDIX.binary_matrix_to_original_escore_notes(bmatrix)
if input_melody_patch > -1:
score = TMIDIX.add_melody_to_enhanced_score_notes(score, melody_patch=input_melody_patch)
medley_compositions_escores.append(score)
print('Done!')
print('=' * 70)
print('Creating medley score...')
medley_labels = ['Imagen POP Medley Composition #' + str(i+1) for i in range(len(medley_compositions_escores))]
medley_escore = TMIDIX.escore_notes_medley(medley_compositions_escores, medley_labels, pause_time_value=16)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', medley_escore[:15])
print('=' * 70)
fn1 = "Imagen-POP-Music-Medley-Diffusion-Transformer-Composition"
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(medley_escore)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Imagen POP Music Medley',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
timings_multiplier=256
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(output_score[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=256)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Imagen POP Music Medley Diffusion Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique POP music medleys with Imagen diffusion transformer</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Imagen-POP-Music-Medley-Diffusion-Transformer&style=flat)\n\n"
"This is a demo for MIDI Images dataset\n\n"
"Please see [MIDI Images](https://huggingface.co/datasets/asigalov61/MIDI-Images) Hugging Face repo for more information\n\n"
)
gr.Markdown("## Choose medley settings")
input_num_medley_comps = gr.Slider(1, 10, value=5, step=1, label="Number of medley compositions")
input_melody_patch = gr.Slider(-1, 127, value=40, step=1, label="Medley melody MIDI patch number")
run_btn = gr.Button("Generate POP Medley", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Generate_POP_Medley, [input_num_medley_comps, input_melody_patch],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch() |