Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from ultralytics import YOLO | |
import spaces | |
import torch | |
import cv2 | |
import numpy as np | |
import os | |
import requests | |
# Define constants for the new model | |
ENTITIES_COLORS = { | |
"Caption": (191, 100, 21), | |
"Footnote": (2, 62, 115), | |
"Formula": (140, 80, 58), | |
"List-item": (168, 181, 69), | |
"Page-footer": (2, 69, 84), | |
"Page-header": (83, 115, 106), | |
"Picture": (255, 72, 88), | |
"Section-header": (0, 204, 192), | |
"Table": (116, 127, 127), | |
"Text": (0, 153, 221), | |
"Title": (196, 51, 2) | |
} | |
BOX_PADDING = 2 | |
# Load pre-trained YOLOv8 model | |
model_path_1 = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
model_path_2 = "models/dla-model.pt" | |
if not os.path.exists(model_path_1): | |
# Download the model file if it doesn't exist | |
model_url_1 = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
response = requests.get(model_url_1) | |
with open(model_path_1, "wb") as f: | |
f.write(response.content) | |
if not os.path.exists(model_path_2): | |
# Assume the second model file is manually uploaded in the specified path | |
# Load models | |
model_1 = YOLO(model_path_1) | |
model_2 = YOLO(model_path_2) | |
# Get class names from the first model | |
class_names_1 = model_1.names | |
class_names_2 = list(ENTITIES_COLORS.keys()) | |
def process_image(image, model_choice): | |
try: | |
if model_choice == "YOLOv8 Model": | |
# Use the first model | |
results = model_1(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True) | |
result = results[0] | |
# Extract annotated image and labels with class names | |
annotated_image = result.plot() | |
detected_areas_labels = "\n".join([ | |
f"{class_names_1[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes | |
]) | |
return annotated_image, detected_areas_labels | |
elif model_choice == "DLA Model": | |
# Use the second model | |
image_path = "input_image.jpg" # Temporary save the uploaded image | |
cv2.imwrite(image_path, cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
image = cv2.imread(image_path) | |
results = model_2.predict(source=image, conf=0.2, iou=0.8) | |
boxes = results[0].boxes | |
if len(boxes) == 0: | |
return image | |
for box in boxes: | |
detection_class_conf = round(box.conf.item(), 2) | |
cls = class_names_2[int(box.cls)] | |
start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1])) | |
end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3])) | |
line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 | |
image = cv2.rectangle(img=image, | |
pt1=start_box, | |
pt2=end_box, | |
color=ENTITIES_COLORS[cls], | |
thickness=line_thickness) | |
text = cls + " " + str(detection_class_conf) | |
font_thickness = max(line_thickness - 1, 1) | |
(text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness) | |
image = cv2.rectangle(img=image, | |
pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2), | |
pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]), | |
color=ENTITIES_COLORS[cls], | |
thickness=-1) | |
start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING) | |
image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), "Labels: " + ", ".join(class_names_2) | |
else: | |
return None, "Invalid model choice" | |
except Exception as e: | |
return None, f"Error processing image: {e}" | |
# Create the Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Document Segmentation Demo (ZeroGPU)") | |
with gr.Row(): | |
model_choice = gr.Dropdown(["YOLOv8 Model", "DLA Model"], label="Select Model", value="YOLOv8 Model") | |
input_image = gr.Image(type="pil", label="Upload Image") | |
output_image = gr.Image(type="pil", label="Annotated Image") | |
output_text = gr.Textbox(label="Detected Areas and Labels") | |
btn = gr.Button("Run Document Segmentation") | |
btn.click(fn=process_image, inputs=[input_image, model_choice], outputs=[output_image, output_text]) | |
# Launch the demo with queuing | |
demo.queue(max_size=1).launch() | |