Spaces:
Runtime error
Runtime error
File size: 3,034 Bytes
6c14077 0ba78e9 af2acd4 0ba78e9 8dec3b6 0ba78e9 6c14077 0ba78e9 0779c9b 6c14077 0779c9b 0ba78e9 6c14077 5b19fc7 6c14077 0ba78e9 54f6b18 0779c9b 54f6b18 0ba78e9 675f890 5b19fc7 675f890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from typing import Dict, Union
import requests
from huggingface_hub import HfApi, ModelFilter
AUTOTRAIN_TASK_TO_HUB_TASK = {
"binary_classification": "text-classification",
"multi_class_classification": "text-classification",
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
"entity_extraction": "token-classification",
"extractive_question_answering": "question-answering",
"translation": "translation",
"summarization": "summarization",
# "single_column_regression": 10,
}
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
api = HfApi()
def get_auth_headers(token: str, prefix: str = "autonlp"):
return {"Authorization": f"{prefix} {token}"}
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.post(
url=domain + path,
json=payload,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print("❌ Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.get(
url=domain + path,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print("❌ Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def get_metadata(dataset_name: str) -> Union[Dict, None]:
data = requests.get(f"https://huggingface.co/api/datasets/{dataset_name}").json()
if data["cardData"] is not None and "train-eval-index" in data["cardData"].keys():
return data["cardData"]["train-eval-index"]
else:
return None
def get_compatible_models(task, dataset_name):
# TODO: relax filter on PyTorch models once supported in AutoTrain
filt = ModelFilter(
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
trained_dataset=dataset_name,
library=["transformers", "pytorch"],
)
compatible_models = api.list_models(filter=filt)
return sorted([model.modelId for model in compatible_models])
def get_key(col_mapping, val):
for key, value in col_mapping.items():
if val == value:
return key
return "key doesn't exist"
def format_col_mapping(col_mapping: dict) -> dict:
for k, v in col_mapping["answers"].items():
col_mapping[f"answers.{k}"] = f"answers.{v}"
del col_mapping["answers"]
return col_mapping
|