Spaces:
Runtime error
Runtime error
File size: 8,939 Bytes
0be985e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
PAGE_SIZE = 10
FILE_DIR_PATH = "/data"
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
def load_model():
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Loading model...Done")
return model, model_config
@spaces.GPU(duration=120)
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500, progress=gr.Progress(track_tqdm=True)):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=sigma_min_slider,
sigma_max=sigma_max_slider,
sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
device=device
)
print("Audio generated.")
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
max_length = sample_rate * seconds_total
if output.shape[1] > max_length:
output = output[:, :max_length]
print(f"Audio trimmed to {seconds_total} seconds.")
random_uuid = uuid.uuid4().hex
unique_filename = f"/data/output_{random_uuid}.wav"
unique_textfile = f"/data/output_{random_uuid}.txt"
print(f"Saving audio to file: {unique_filename}")
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
with open(unique_textfile, "w") as file:
file.write(prompt)
return unique_filename
def list_all_outputs(generation_history):
directory_path = FILE_DIR_PATH
files_in_directory = os.listdir(directory_path)
wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.wav')]
wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True)
history_list = generation_history.split(',') if generation_history else []
updated_files = [file for file in wav_files if file not in history_list]
updated_history = updated_files + history_list
return ','.join(updated_history), gr.update(visible=True)
def increase_list_size(list_size):
return list_size+PAGE_SIZE
css = '''
#live_gen:before {
content: '';
animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite;
border: 2px solid var(--color-accent);
background: transparent;
z-index: var(--layer-1);
pointer-events: none;
position: absolute;
height: 100%;
width: 100%;
border-radius: 7px;
}
#live_gen_items{
max-height: 570px;
overflow-y: scroll;
}
'''
examples = [
[
"serene soundscape of a beach at sunset.", # Text prompt
"dpmpp-2m-sde", # Sampler type
45, # Duration in Seconds
100, # Number of Diffusion Steps
10, # CFG Scale
0.5, # Sigma min
800 # Sigma max
],
[
"clapping crowd", # Text prompt
"dpmpp-3m-sde", # Sampler type
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
0.5, # Sigma min
500 # Sigma max
],
[
"forest ambiance birds chirping wind rustling.", # Text prompt
"k-dpm-fast", # Sampler type
60, # Duration in Seconds
140, # Number of Diffusion Steps
7.5, # CFG Scale
0.3, # Sigma min
700 # Sigma max
],
[
"gentle rainfall distant thunder.", # Text prompt
"dpmpp-3m-sde", # Sampler type
35, # Duration in Seconds
110, # Number of Diffusion Steps
8, # CFG Scale
0.1, # Sigma min
500 # Sigma max
],
[
"cafe environment soft edm techno music ambient chatter.", # Text prompt
"k-lms", # Sampler type
25, # Duration in Seconds
90, # Number of Diffusion Steps
6, # CFG Scale
0.4, # Sigma min
650 # Sigma max
],
["Rock beat drumming acoustic guitar.",
"dpmpp-2m-sde", # Sampler type
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
0.3, # Sigma min
500 # Sigma max
]
]
with gr.Blocks(theme=theme, css=css) as demo:
gr.Markdown("# Stable Audio Multiplayer Live")
gr.Markdown("Generate audio with text, share and learn from others how to best prompt this new model")
generation_history = gr.Textbox(visible=False)
list_size = gr.Number(value=PAGE_SIZE, visible=False)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
btn_run = gr.Button("Generate")
with gr.Accordion("Parameters", open=True):
with gr.Row():
duration = gr.Slider(0, 47, value=20, step=1, label="Duration in Seconds")
with gr.Accordion("Advanced parameters", open=False):
steps = gr.Slider(10, 150, value=80, step=10, label="Number of Diffusion Steps")
sampler_type = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms",
"k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"],
label="Sampler type", value="dpmpp-3m-sde")
with gr.Row():
cfg_scale = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
sigma_min = gr.Slider(0.0, 5.0, step=0.01, value=0.3, label="Sigma min")
sigma_max = gr.Slider(0.0, 1000.0, step=0.1, value=500, label="Sigma max")
with gr.Column() as output_list:
output = gr.Audio(type="filepath", label="Generated Audio")
with gr.Column(elem_id="live_gen") as community_list:
gr.Markdown("# Community generations")
with gr.Column(elem_id="live_gen_items"):
@gr.render(inputs=[generation_history, list_size])
def show_output_list(generation_history, list_size):
history_list = generation_history.split(',') if generation_history else []
history_list_latest = history_list[:list_size]
for generation in history_list_latest:
generation_prompt_file = generation.replace('.wav', '.txt')
with open(generation_prompt_file, 'r') as file:
generation_prompt = file.read()
with gr.Group():
gr.Markdown(value=f"### {generation_prompt}")
gr.Audio(value=generation)
load_more = gr.Button("Load more")
load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
gr.Examples(
fn=generate_audio,
examples=examples,
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
outputs=output,
cache_examples="lazy"
)
gr.on(
triggers=[btn_run.click, prompt.submit],
fn=generate_audio,
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
outputs=output
)
demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2)
model, model_config = load_model()
demo.launch() |