File size: 8,939 Bytes
0be985e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond

PAGE_SIZE = 10
FILE_DIR_PATH = "/data"
theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)


def load_model():
    model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
    print("Loading model...Done")
    return model, model_config

@spaces.GPU(duration=120) 
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500, progress=gr.Progress(track_tqdm=True)):
    print(f"Prompt received: {prompt}")
    print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")

    # Fetch the Hugging Face token from the environment variable
    hf_token = os.getenv('HF_TOKEN')
    print(f"Hugging Face token: {hf_token}")

    # Use pre-loaded model and configuration
    model, model_config = load_model()
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")

    model = model.to(device)
    print("Model moved to device.")

    # Set up text and timing conditioning
    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]
    print(f"Conditioning: {conditioning}")

    print("Generating audio...")
    output = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=sample_size,
        sigma_min=sigma_min_slider,
        sigma_max=sigma_max_slider,
        sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
        device=device
    )
    print("Audio generated.")
    output = rearrange(output, "b d n -> d (b n)")
    print("Audio rearranged.")
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    max_length = sample_rate * seconds_total
    if output.shape[1] > max_length:
        output = output[:, :max_length]
        print(f"Audio trimmed to {seconds_total} seconds.")
    random_uuid = uuid.uuid4().hex
    unique_filename = f"/data/output_{random_uuid}.wav"
    unique_textfile = f"/data/output_{random_uuid}.txt"
    print(f"Saving audio to file: {unique_filename}")
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")
    with open(unique_textfile, "w") as file:
        file.write(prompt)
    return unique_filename

def list_all_outputs(generation_history):
    directory_path = FILE_DIR_PATH
    files_in_directory = os.listdir(directory_path)
    wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.wav')]
    wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True)
    history_list = generation_history.split(',') if generation_history else []
    updated_files = [file for file in wav_files if file not in history_list]
    updated_history = updated_files + history_list
    return ','.join(updated_history), gr.update(visible=True)

def increase_list_size(list_size):
    return list_size+PAGE_SIZE

css = '''
#live_gen:before {
    content: '';
    animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite;
    border: 2px solid var(--color-accent);
    background: transparent;
    z-index: var(--layer-1);
    pointer-events: none;
    position: absolute;
    height: 100%;
    width: 100%;
    border-radius: 7px;
}
#live_gen_items{
    max-height: 570px;
    overflow-y: scroll;
}
'''

examples = [
    [
        "serene soundscape of a beach at sunset.",  # Text prompt
        "dpmpp-2m-sde",  # Sampler type
        45,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        10,  # CFG Scale
        0.5,  # Sigma min
        800  # Sigma max
    ],
    [
        "clapping crowd",  # Text prompt
        "dpmpp-3m-sde",  # Sampler type
        30,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        7,  # CFG Scale
        0.5,  # Sigma min
        500  # Sigma max
    ],
    [
        "forest ambiance birds chirping wind rustling.",  # Text prompt
        "k-dpm-fast",  # Sampler type
        60,  # Duration in Seconds
        140,  # Number of Diffusion Steps
        7.5,  # CFG Scale
        0.3,  # Sigma min
        700  # Sigma max
    ],
    [
        "gentle rainfall distant thunder.",  # Text prompt
        "dpmpp-3m-sde",  # Sampler type
        35,  # Duration in Seconds
        110,  # Number of Diffusion Steps
        8,  # CFG Scale
        0.1,  # Sigma min
        500  # Sigma max
    ],
    [
        "cafe environment soft edm techno music ambient chatter.",  # Text prompt
        "k-lms",  # Sampler type
        25,  # Duration in Seconds
        90,  # Number of Diffusion Steps
        6,  # CFG Scale
        0.4,  # Sigma min
        650  # Sigma max
    ],
    ["Rock beat drumming acoustic guitar.",
      "dpmpp-2m-sde",  # Sampler type
        30,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        7,  # CFG Scale
        0.3,  # Sigma min
        500  # Sigma max
    ]
]

with gr.Blocks(theme=theme, css=css) as demo:
    gr.Markdown("# Stable Audio Multiplayer Live")
    gr.Markdown("Generate audio with text, share and learn from others how to best prompt this new model")
    generation_history = gr.Textbox(visible=False)
    list_size = gr.Number(value=PAGE_SIZE, visible=False)
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
            btn_run = gr.Button("Generate")
            with gr.Accordion("Parameters", open=True): 
                with gr.Row():
                    duration = gr.Slider(0, 47, value=20, step=1, label="Duration in Seconds")
        
                with gr.Accordion("Advanced parameters", open=False):
                    steps = gr.Slider(10, 150, value=80, step=10, label="Number of Diffusion Steps")
                    sampler_type = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", 
                                                "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], 
                                                label="Sampler type", value="dpmpp-3m-sde")
                    with gr.Row():
                        cfg_scale = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
                        sigma_min = gr.Slider(0.0, 5.0, step=0.01, value=0.3, label="Sigma min")
                        sigma_max = gr.Slider(0.0, 1000.0, step=0.1, value=500, label="Sigma max")
        with gr.Column() as output_list:
            output = gr.Audio(type="filepath", label="Generated Audio")
            with gr.Column(elem_id="live_gen") as community_list:
                gr.Markdown("# Community generations")
                with gr.Column(elem_id="live_gen_items"):
                    @gr.render(inputs=[generation_history, list_size])
                    def show_output_list(generation_history, list_size):
                        history_list = generation_history.split(',') if generation_history else []
                        history_list_latest = history_list[:list_size]
                        for generation in history_list_latest:
                            generation_prompt_file = generation.replace('.wav', '.txt')
                            with open(generation_prompt_file, 'r') as file:
                                generation_prompt = file.read()
                            with gr.Group():
                                gr.Markdown(value=f"### {generation_prompt}")
                                gr.Audio(value=generation)
                        
                        
                load_more = gr.Button("Load more")
                load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)    
    
    gr.Examples(
        fn=generate_audio,
        examples=examples,
        inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
        outputs=output,
        cache_examples="lazy"
    )
    gr.on(
        triggers=[btn_run.click, prompt.submit],
        fn=generate_audio, 
        inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
        outputs=output
    )
    demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2)

model, model_config = load_model()

demo.launch()