pcback's picture
Fix app.py
08161c3
raw
history blame
8.65 kB
import streamlit as st
import PIL
import numpy as np
import torch
from collections import defaultdict
import cv2
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from doctr.utils.visualization import visualize_page
import pytesseract
from pytesseract import Output
from bs4 import BeautifulSoup as bs
import sys, json
import postprocess
ocr_predictor = ocr_predictor('db_resnet50', 'crnn_vgg16_bn', pretrained=True)
structure_model = torch.hub.load('ultralytics/yolov5', 'custom', 'weights/structure_wts.pt', force_reload=True)
imgsz = 640
structure_class_names = [
'table', 'table column', 'table row', 'table column header',
'table projected row header', 'table spanning cell', 'no object'
]
structure_class_map = {k: v for v, k in enumerate(structure_class_names)}
structure_class_thresholds = {
"table": 0.5,
"table column": 0.5,
"table row": 0.5,
"table column header": 0.25,
"table projected row header": 0.25,
"table spanning cell": 0.25,
"no object": 10
}
def PIL_to_cv(pil_img):
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
def cv_to_PIL(cv_img):
return PIL.Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
def table_structure(filename):
pil_img = PIL.Image.open(filename)
image = PIL_to_cv(pil_img)
pred = structure_model(image, size=imgsz)
pred = pred.xywhn[0]
result = pred.cpu().numpy()
return result
def ocr(filename):
doc = DocumentFile.from_images(filename.read())
result = ocr_predictor(doc).export()
result = result['pages'][0]
H, W = result['dimensions']
ocr_res = []
for block in result['blocks']:
for line in block['lines']:
for word in line['words']:
bbox = word['geometry']
word_info = {
'bbox': [int(bbox[0][0] * W), int(bbox[0][1] * H), int(bbox[1][0] * W), int(bbox[1][1] * H)],
'text': word['value']
}
ocr_res.append(word_info)
return ocr_res
def convert_stucture(page_tokens, filename, structure_result):
pil_img = PIL.Image.open(filename)
image = PIL_to_cv(pil_img)
width = image.shape[1]
height = image.shape[0]
# print(width, height)
bboxes = []
scores = []
labels = []
for i, result in enumerate(structure_result):
class_id = int(result[5])
score = float(result[4])
min_x = result[0]
min_y = result[1]
w = result[2]
h = result[3]
x1 = int((min_x-w/2)*width)
y1 = int((min_y-h/2)*height)
x2 = int((min_x+w/2)*width)
y2 = int((min_y+h/2)*height)
# print(x1, y1, x2, y2)
bboxes.append([x1, y1, x2, y2])
scores.append(score)
labels.append(class_id)
table_objects = []
for bbox, score, label in zip(bboxes, scores, labels):
table_objects.append({'bbox': bbox, 'score': score, 'label': label})
# print('table_objects:', table_objects)
table = {'objects': table_objects, 'page_num': 0}
table_class_objects = [obj for obj in table_objects if obj['label'] == structure_class_map['table']]
if len(table_class_objects) > 1:
table_class_objects = sorted(table_class_objects, key=lambda x: x['score'], reverse=True)
try:
table_bbox = list(table_class_objects[0]['bbox'])
except:
table_bbox = (0,0,1000,1000)
# print('table_class_objects:', table_class_objects)
# print('table_bbox:', table_bbox)
tokens_in_table = [token for token in page_tokens if postprocess.iob(token['bbox'], table_bbox) >= 0.5]
# print('tokens_in_table:', tokens_in_table)
table_structures, cells, confidence_score = postprocess.objects_to_cells(table, table_objects, tokens_in_table, structure_class_names, structure_class_thresholds)
return table_structures, cells, confidence_score
def visualize_cells(filename, cells, ax):
pil_img = PIL.Image.open(filename)
image = PIL_to_cv(pil_img)
for i, cell in enumerate(cells):
bbox = cell['bbox']
x1 = int(bbox[0])
y1 = int(bbox[1])
x2 = int(bbox[2])
y2 = int(bbox[3])
cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0))
ax.image(cv_to_PIL(image))
def pytess(cell_pil_img):
return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --tessdata-dir tessdata --oem 3 --psm 6')['text']).strip()
def resize(pil_img, size=1800):
length_x, width_y = pil_img.size
factor = max(1, size / length_x)
size = int(factor * length_x), int(factor * width_y)
pil_img = pil_img.resize(size, PIL.Image.ANTIALIAS)
return pil_img, factor
def image_smoothening(img):
ret1, th1 = cv2.threshold(img, 180, 255, cv2.THRESH_BINARY)
ret2, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
blur = cv2.GaussianBlur(th2, (1, 1), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return th3
def remove_noise_and_smooth(pil_img):
img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
filtered = cv2.adaptiveThreshold(img.astype(np.uint8), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, 3)
kernel = np.ones((1, 1), np.uint8)
opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
img = image_smoothening(img)
or_image = cv2.bitwise_or(img, closing)
pil_img = PIL.Image.fromarray(or_image)
return pil_img
def extract_text_from_cells(filename, cells):
pil_img = PIL.Image.open(filename)
pil_img, factor = resize(pil_img)
#pil_img = remove_noise_and_smooth(pil_img)
#display(pil_img)
for cell in cells:
bbox = [x * factor for x in cell['bbox']]
cell_pil_img = pil_img.crop(bbox)
#cell_pil_img = remove_noise_and_smooth(cell_pil_img)
#cell_pil_img = tess_prep(cell_pil_img)
cell['text'] = pytess(cell_pil_img)
return cells
def cells_to_html(cells):
for cell in cells:
cell['column_nums'].sort()
cell['row_nums'].sort()
n_cols = max(cell['column_nums'][-1] for cell in cells) + 1
n_rows = max(cell['row_nums'][-1] for cell in cells) + 1
html_code = ''
for r in range(n_rows):
r_cells = [cell for cell in cells if cell['row_nums'][0] == r]
r_cells.sort(key=lambda x: x['column_nums'][0])
r_html = ''
for cell in r_cells:
rowspan = cell['row_nums'][-1] - cell['row_nums'][0] + 1
colspan = cell['column_nums'][-1] - cell['column_nums'][0] + 1
r_html += f'<td rowspan="{rowspan}" colspan="{colspan}">{cell["text"]}</td>'
html_code += f'<tr>{r_html}</tr>'
html_code = '''<html>
<head>
<meta charset="UTF-8">
<style>
table, th, td {
border: 1px solid black;
font-size: 10px;
}
</style>
</head>
<body>
<table frame="hsides" rules="groups" width="100%%">
%s
</table>
</body>
</html>''' % html_code
soup = bs(html_code)
html_code = soup.prettify()
return html_code
def main():
st.set_page_config(layout="wide")
st.title("Table Structure Recognition Demo")
st.write('\n')
cols = st.columns((1, 1))
cols[0].subheader("Input page")
cols[1].subheader("Structure output")
st.sidebar.title("Image upload")
st.set_option('deprecation.showfileUploaderEncoding', False)
filename = st.sidebar.file_uploader("Upload files", type=['png', 'jpeg', 'jpg'])
if st.sidebar.button("Analyze image"):
if filename is None:
st.sidebar.write("Please upload an image")
else:
print(filename)
cols[0].image(filename)
ocr_res = ocr(filename)
structure_result = table_structure(filename)
table_structures, cells, confidence_score = convert_stucture(ocr_res, filename, structure_result)
visualize_cells(filename, cells, cols[1])
cells = extract_text_from_cells(filename, cells)
html_code = cells_to_html(cells)
st.markdown("\nHTML output:")
st.markdown(html_code, unsafe_allow_html=True)
if __name__ == '__main__':
main()