File size: 15,609 Bytes
304227c
 
2819e15
304227c
0bb3006
2819e15
 
 
304227c
569890c
5f815d6
569890c
69ba8e8
304227c
2819e15
 
adb8bfe
0bb3006
2819e15
 
 
 
 
3114b44
0bb3006
2819e15
143e72c
2819e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594fc9e
2819e15
 
 
 
 
 
 
 
 
 
515ea20
2819e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfb23e
cfef8b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608dc33
 
 
 
 
006bfbb
 
cfef8b9
2819e15
 
515ea20
006bfbb
cfef8b9
2819e15
 
cfef8b9
006bfbb
2819e15
cfef8b9
 
 
 
 
 
 
006bfbb
2819e15
cfef8b9
8100125
 
 
 
 
 
 
 
 
 
1e85ed3
 
 
8100125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec040e
8100125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08814a4
8100125
 
 
006bfbb
08814a4
8100125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c5b54
2e6366e
 
 
 
 
 
8100125
 
 
 
 
515ea20
8910331
 
4228b37
 
 
5e4f469
4228b37
 
 
 
 
 
 
 
 
 
 
 
5e4f469
304227c
2819e15
8100125
2819e15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal
from huggingface_hub.errors import HfHubHTTPError

from custom_css import custom_css
from variables import *


class PromptInput(BaseModel):
    text: str = Field(..., description="The initial prompt text")
    meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")

class RefinementOutput(BaseModel):
    query_analysis: Optional[str] = None
    initial_prompt_evaluation: Optional[str] = None
    refined_prompt: Optional[str] = None
    explanation_of_refinements: Optional[str] = None
    raw_content: Optional[str] = None

class PromptRefiner:
    def __init__(self, api_token: str):
        self.client = InferenceClient(token=api_token, timeout=120)
        self.meta_prompts = {
            "morphosis": original_meta_prompt,
            "verse": new_meta_prompt,
            "physics": metaprompt1,
            "bolism": loic_metaprompt,
            "done": metadone,
            "star": echo_prompt_refiner,
            "math": math_meta_prompt,
            "arpe": autoregressive_metaprompt
        }

    def refine_prompt(self, prompt_input: PromptInput) -> tuple:
        try:
            # Select meta prompt using dictionary instead of if-elif chain
            selected_meta_prompt = self.meta_prompts.get(
                prompt_input.meta_prompt_choice, 
                advanced_meta_prompt
            )
            
            messages = [
                {
                    "role": "system", 
                    "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
                },
                {
                    "role": "user", 
                    "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
                }
            ]

            response = self.client.chat_completion(
                model=prompt_refiner_model,
                messages=messages,
                max_tokens=3000,
                temperature=0.8
            )
            
            response_content = response.choices[0].message.content.strip()
            
            # Parse the response
            result = self._parse_response(response_content)
            
            return (
                result.get('initial_prompt_evaluation', ''),
                result.get('refined_prompt', ''),
                result.get('explanation_of_refinements', ''),
                result
            )

        except HfHubHTTPError as e:
            return (
                "Error: Model timeout. Please try again later.",
                "The selected model is currently experiencing high traffic.",
                "The selected model is currently experiencing high traffic.",
                {}
            )
        except Exception as e:
            return (
                f"Error: {str(e)}",
                "",
                "An unexpected error occurred.",
                {}
            )

    def _parse_response(self, response_content: str) -> dict:
        try:
            # Try to find JSON in response
            json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
            if json_match:
                json_str = json_match.group(1)
                json_str = re.sub(r'\n\s*', ' ', json_str)
                json_str = json_str.replace('"', '\\"')
                json_output = json.loads(f'"{json_str}"')
                
                if isinstance(json_output, str):
                    json_output = json.loads(json_output)
                output={
                    key: value.replace('\\"', '"') if isinstance(value, str) else value
                    for key, value in json_output.items()
                }
                output['response_content']=json_output
                # Clean up JSON values
                return output
            
            # Fallback to regex parsing if no JSON found
            output = {}
            for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
                pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
                match = re.search(pattern, response_content, re.DOTALL)
                output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
            output['response_content']=response_content
            return output

        except (json.JSONDecodeError, ValueError) as e:
            print(f"Error parsing response: {e}")
            print(f"Raw content: {response_content}")
            return {
                "initial_prompt_evaluation": "Error parsing response",
                "refined_prompt": "",
                "explanation_of_refinements": str(e),
                'response_content':str(e)
            }

    def apply_prompt(self, prompt: str, model: str) -> str:
        try:
            messages = [
                {
                    "role": "system",
                    "content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
                        
                        1. Paragraph Spacing:
                        - Add TWO blank lines between major sections (##)
                        - Add ONE blank line between subsections (###)
                        - Add ONE blank line between paragraphs within sections
                        - Add ONE blank line before and after lists
                        - Add ONE blank line before and after code blocks
                        - Add ONE blank line before and after blockquotes
                        
                        2. Section Formatting:
                        # Title
                        
                        ## Major Section
                        
                        [blank line]
                        Content paragraph 1
                        [blank line]
                        Content paragraph 2
                        [blank line]"""
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ]
    
            response = self.client.chat_completion(
                model=model,
                messages=messages,
                max_tokens=3000,
                temperature=0.8,
                stream=True  # Enable streaming in the API call
            )
            
            # Initialize an empty string to accumulate the response
            full_response = ""
            
            # Process the streaming response
            for chunk in response:
                if chunk.choices[0].delta.content is not None:
                    full_response += chunk.choices[0].delta.content
                    
            # Return the complete response
            return full_response.replace('\n\n', '\n').strip()
                
        except Exception as e:
            return f"Error: {str(e)}"

class GradioInterface:
    def __init__(self, prompt_refiner: PromptRefiner,custom_css):
        self.prompt_refiner = prompt_refiner
        custom_css = custom_css
        with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
            with gr.Column(elem_classes=["container", "title-container"]):
                gr.Markdown("# PROMPT++")
                gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
                gr.Markdown("Learn how to generate an improved version of your prompts.")
                gr.HTML(
                "<p style='text-align: center; color:orange;'>⚠ This space is in progress, and we're actively working on it, so you might find some bugs! Please report any issues you have in the Community tab to help us make it better for all.</p>"
                )
        
            with gr.Column(elem_classes=["container", "input-container"]):
                prompt_text = gr.Textbox(
                    label="Type your prompt (or let it empty to see metaprompt)",
                   # elem_classes="no-background",
                    #elem_classes="container2",
                    lines=5
                )
                meta_prompt_choice = gr.Radio(
                    ["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
                    label="Choose Meta Prompt",
                    value="star",
                    elem_classes=["no-background", "radio-group"]
                   # elem_classes=[ "radio-group"]
                )
                refine_button = gr.Button("Refine Prompt")  
                
                # Option 1: Put Examples here (before Meta Prompt explanation)
                with gr.Row(elem_classes=["container2"]):
                    with gr.Accordion("Examples", open=False):
                        gr.Examples(
                            examples=[
                                ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "done"],
                                ["Tell me about that guy who invented the light bulb", "physics"],
                                ["Explain the universe.", "star"],
                                ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
                                ["List American presidents.", "verse"],                        
                                ["Explain why the experiment failed.", "morphosis"],
                                ["Is nuclear energy good?", "verse"],
                                ["How does a computer work?", "phor"],
                                ["How to make money fast?", "done"],
                                ["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],                    
                            ],
                            inputs=[prompt_text, meta_prompt_choice]
                        )
                       
                    with gr.Accordion("Meta Prompt explanation", open=False):
                        gr.Markdown(explanation_markdown)
                

                
                # Option 2: Or put Examples here (after the button)
                # with gr.Accordion("Examples", open=False):
                #     gr.Examples(...)
                
            with gr.Column(elem_classes=["container", "analysis-container"]):
                gr.Markdown(' ')
                gr.Markdown("### Initial prompt analysis")
                analysis_evaluation = gr.Markdown()
                gr.Markdown("### Refined Prompt")
                refined_prompt = gr.Textbox(
                                    label="Refined Prompt",
                                    interactive=True,
                                    show_label=True,  # Must be True for copy button to show
                                    show_copy_button=True,  # Adds the copy button
                             #       elem_classes="no-background"
                                )
                gr.Markdown("### Explanation of Refinements")
                explanation_of_refinements = gr.Markdown()
            

            with gr.Column(elem_classes=["container", "model-container"]):
              #  gr.Markdown("## See MetaPrompt Impact")            
                with gr.Row():
                    apply_model = gr.Dropdown(models,
                                            value="meta-llama/Llama-3.1-8B-Instruct",
                                            label="Choose the Model",
                                            container=False,  # This removes the container around the dropdown
                                            scale=1,         # Controls the width relative to other components
                                            min_width=300    # Sets minimum width in pixels
                                         #   elem_classes="no-background"
                                        )
                    apply_button = gr.Button("Apply MetaPrompt")

          #  with gr.Column(elem_classes=["container", "results-container"]):
                gr.Markdown("### Prompts on choosen model")
                with gr.Tabs():
                    with gr.TabItem("Original Prompt Output"):
                        original_output = gr.Markdown()
                    with gr.TabItem("Refined Prompt Output"):
                        refined_output = gr.Markdown()
            with gr.Accordion("Full Response JSON", open=False, visible=True):
                full_response_json = gr.JSON()
                
            refine_button.click(
                fn=self.refine_prompt,
                inputs=[prompt_text, meta_prompt_choice],
                outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
            )

            # In the __init__ method of GradioInterface class:
            apply_button.click(
                fn=self.apply_prompts,
                inputs=[prompt_text, refined_prompt, apply_model],
                outputs=[original_output, refined_output],
                api_name="apply_prompts"  # Optional: adds API endpoint
            )

    def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
        input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
        # Since result is a tuple with 4 elements based on the return value of prompt_refiner.refine_prompt
        initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(input_data)
        
        analysis_evaluation = f"\n\n{initial_prompt_evaluation}"
        return (
            analysis_evaluation,
            refined_prompt,
            explanation_refinements,
            full_response
        )

    def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
        try:
            original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
            refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
            return original_output, refined_output
        except Exception as e:
            return f"Error: {str(e)}", f"Error: {str(e)}"

    def launch(self, share=False):
        self.interface.launch(share=share)


#explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
'''   
meta_info=""
api_token = os.getenv('HF_API_TOKEN')
if not api_token:
    raise ValueError("HF_API_TOKEN not found in environment variables")

metadone = os.getenv('metadone')
prompt_refiner_model = os.getenv('prompt_refiner_model')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')
metaprompt1 = os.getenv('metaprompt1')   
loic_metaprompt = os.getenv('loic_metaprompt')    
openai_metaprompt = os.getenv('openai_metaprompt')
original_meta_prompt = os.getenv('original_meta_prompt')    
new_meta_prompt = os.getenv('new_meta_prompt')   
advanced_meta_prompt = os.getenv('advanced_meta_prompt')
math_meta_prompt = os.getenv('metamath')
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')
'''    

if __name__ == '__main__':
    prompt_refiner = PromptRefiner(api_token)
    gradio_interface = GradioInterface(prompt_refiner,custom_css)
    gradio_interface.launch(share=True)