Spaces:
Sleeping
Sleeping
File size: 1,568 Bytes
a4a31bd 4d389e0 a4a31bd 4d389e0 a4a31bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class SeizureDetector(nn.Module):
def __init__(self, num_classes=2):
super(SeizureDetector, self).__init__()
self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 224, 224
self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 112, 112
self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 112, 112 -> 64, 56, 56
self.conv3= nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) # 128, 56, 56 -> 128, 28, 28
self.conv4= nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) # 256, 28, 28 -> 256, 14, 14
# Adding Batch Normalization
self.bn1 = nn.BatchNorm2d(32)
self.bn2 = nn.BatchNorm2d(64)
self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(256)
self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50%
self.fc1= nn.Linear(256*14*14, 120)
self.fc2= nn.Linear(120, 32)
self.fc3= nn.Linear(32, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 112, 112
x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 56, 56
x = self.pool(F.relu(self.bn3(self.conv3(x)))) # 128, 28, 28
x = self.pool(F.relu(self.bn4(self.conv4(x)))) # 256, 14, 14
x = torch.flatten(x, 1)
x = self.dropout(F.relu(self.fc1(x))) # Apply dropout
x = self.dropout(F.relu(self.fc2(x))) # Apply dropout
x = self.fc3(x)
return x |