Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
from baukit import TraceDict | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers.schedulers.scheduling_ddim import DDIMScheduler | |
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler | |
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler | |
import util | |
def default_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('prompts', type=str, nargs='+') | |
parser.add_argument('outpath', type=str) | |
parser.add_argument('--images', type=str, nargs='+', default=None) | |
parser.add_argument('--nsteps', type=int, default=1000) | |
parser.add_argument('--nimgs', type=int, default=1) | |
parser.add_argument('--start_itr', type=int, default=0) | |
parser.add_argument('--return_steps', action='store_true', default=False) | |
parser.add_argument('--pred_x0', action='store_true', default=False) | |
parser.add_argument('--device', type=str, default='cuda:0') | |
parser.add_argument('--seed', type=int, default=42) | |
return parser | |
class StableDiffuser(torch.nn.Module): | |
def __init__(self, | |
scheduler='LMS' | |
): | |
super().__init__() | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
self.vae = AutoencoderKL.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
self.tokenizer = CLIPTokenizer.from_pretrained( | |
"openai/clip-vit-large-patch14") | |
self.text_encoder = CLIPTextModel.from_pretrained( | |
"openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
self.unet = UNet2DConditionModel.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", subfolder="unet") | |
if scheduler == 'LMS': | |
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
elif scheduler == 'DDIM': | |
self.scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") | |
elif scheduler == 'DDPM': | |
self.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") | |
self.eval() | |
def get_noise(self, batch_size, img_size, generator=None): | |
param = list(self.parameters())[0] | |
return torch.randn( | |
(batch_size, self.unet.in_channels, img_size // 8, img_size // 8), | |
generator=generator).type(param.dtype).to(param.device) | |
def add_noise(self, latents, noise, step): | |
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]])) | |
def text_tokenize(self, prompts): | |
return self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
def text_detokenize(self, tokens): | |
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1] | |
def text_encode(self, tokens): | |
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0] | |
def decode(self, latents): | |
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample | |
def encode(self, tensors): | |
return self.vae.encode(tensors).latent_dist.mode() * 0.18215 | |
def to_image(self, image): | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def set_scheduler_timesteps(self, n_steps): | |
self.scheduler.set_timesteps(n_steps, device=self.unet.device) | |
def get_initial_latents(self, n_imgs, img_size, n_prompts, generator=None): | |
noise = self.get_noise(n_imgs, img_size, generator=generator).repeat(n_prompts, 1, 1, 1) | |
latents = noise * self.scheduler.init_noise_sigma | |
return latents | |
def get_text_embeddings(self, prompts, n_imgs): | |
text_tokens = self.text_tokenize(prompts) | |
text_embeddings = self.text_encode(text_tokens) | |
unconditional_tokens = self.text_tokenize([""] * len(prompts)) | |
unconditional_embeddings = self.text_encode(unconditional_tokens) | |
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings]).repeat_interleave(n_imgs, dim=0) | |
return text_embeddings | |
def predict_noise(self, | |
iteration, | |
latents, | |
text_embeddings, | |
guidance_scale=7.5 | |
): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latents = torch.cat([latents] * 2) | |
latents = self.scheduler.scale_model_input( | |
latents, self.scheduler.timesteps[iteration]) | |
# predict the noise residual | |
noise_prediction = self.unet( | |
latents, self.scheduler.timesteps[iteration], encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
noise_prediction_uncond, noise_prediction_text = noise_prediction.chunk(2) | |
noise_prediction = noise_prediction_uncond + guidance_scale * \ | |
(noise_prediction_text - noise_prediction_uncond) | |
return noise_prediction | |
def diffusion(self, | |
latents, | |
text_embeddings, | |
end_iteration=1000, | |
start_iteration=0, | |
return_steps=False, | |
pred_x0=False, | |
trace_args=None, | |
show_progress=True, | |
**kwargs): | |
latents_steps = [] | |
trace_steps = [] | |
trace = None | |
for iteration in tqdm(range(start_iteration, end_iteration), disable=not show_progress): | |
if trace_args: | |
trace = TraceDict(self, **trace_args) | |
noise_pred = self.predict_noise( | |
iteration, | |
latents, | |
text_embeddings, | |
**kwargs) | |
# compute the previous noisy sample x_t -> x_t-1 | |
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents) | |
if trace_args: | |
trace.close() | |
trace_steps.append(trace) | |
latents = output.prev_sample | |
if return_steps or iteration == end_iteration - 1: | |
output = output.pred_original_sample if pred_x0 else latents | |
if return_steps: | |
latents_steps.append(output.cpu()) | |
else: | |
latents_steps.append(output) | |
return latents_steps, trace_steps | |
def __call__(self, | |
prompts, | |
img_size=512, | |
n_steps=50, | |
n_imgs=1, | |
end_iteration=None, | |
generator=None, | |
**kwargs | |
): | |
assert 0 <= n_steps <= 1000 | |
if not isinstance(prompts, list): | |
prompts = [prompts] | |
self.set_scheduler_timesteps(n_steps) | |
latents = self.get_initial_latents(n_imgs, img_size, len(prompts), generator=generator) | |
text_embeddings = self.get_text_embeddings(prompts,n_imgs=n_imgs) | |
end_iteration = end_iteration or n_steps | |
latents_steps, trace_steps = self.diffusion( | |
latents, | |
text_embeddings, | |
end_iteration=end_iteration, | |
**kwargs | |
) | |
latents_steps = [self.decode(latents.to(self.unet.device)) for latents in latents_steps] | |
images_steps = [self.to_image(latents) for latents in latents_steps] | |
images_steps = list(zip(*images_steps)) | |
if trace_steps: | |
return images_steps, trace_steps | |
return images_steps | |
if __name__ == '__main__': | |
parser = default_parser() | |
args = parser.parse_args() | |
diffuser = StableDiffuser(seed=args.seed, scheduler='DDIM').to(torch.device(args.device)).half() | |
images = diffuser(args.prompts, | |
n_steps=args.nsteps, | |
n_imgs=args.nimgs, | |
start_iteration=args.start_itr, | |
return_steps=args.return_steps, | |
pred_x0=args.pred_x0 | |
) | |
util.image_grid(images, args.outpath) |