File size: 4,835 Bytes
3cc354a e31d84c a15530e e08ee6c 3cc354a 8c5c6b9 7bf3ed0 3cc354a 8c5c6b9 3cc354a e31d84c 3cc354a e31d84c 3cc354a e31d84c 3cc354a e31d84c 3cc354a a15530e 3cc354a 8c5c6b9 3cc354a e31d84c 3cc354a 8c5c6b9 a15530e 8c5c6b9 a15530e 8c5c6b9 7bf3ed0 8c5c6b9 e31d84c 8c5c6b9 e31d84c 8c5c6b9 3cc354a 8c5c6b9 e31d84c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from operator import eq
from typing import Callable, Iterable, Union
import evaluate
import datasets
import numpy as np
import logging
logger = logging.getLogger(__name__)
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
Computes precision, recall, f1 scores for joint entity-relation extraction task.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
eq_fn: function to compare two items. Defaults to the equality operator.
Returns:
recall:
precision:
f1:
Examples:
>>> jer = evaluate.load("jer")
>>> results = jer.compute(references=[["Baris | play | tennis", "Deniz | travel | London"]], predictions=[["Baris | play | tennis"]])
>>> print(results)
{'recall': 0.5, 'precision': 1.0, 'f1': 0.6666666666666666}
"""
Triplet = Union[str, tuple, int]
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class jer(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.features.Sequence(datasets.Value('string')),
'references': datasets.features.Sequence(datasets.Value('string')),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
pass
def _compute(self, predictions, references, eq_fn=eq):
"""Returns the scores"""
score_dicts = [
self._compute_single(prediction=prediction, reference=reference, eq_fn=eq_fn)
for prediction, reference in zip(predictions, references)
]
return {('mean_' + key): np.mean([scores[key] for scores in score_dicts]) for key in score_dicts[0].keys()}
def _compute_single(
self,
*,
prediction: Iterable[Triplet],
reference: Iterable[Triplet],
eq_fn: Callable[[Triplet, Triplet], bool],
):
reference_set = set(reference)
if len(reference) != len(reference_set):
logger.warn(f"Duplicates found in the reference list {reference}")
prediction_set = set(prediction)
tp = sum(int(is_in(item, prediction, eq_fn=eq_fn)) for item in reference)
fp = len(prediction_set) - tp
fn = len(reference_set) - tp
# Calculate metrics
precision = tp / (tp + fp) if tp + fp > 0 else 0
recall = tp / (tp + fn) if tp + fn > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
return {
'precision': precision,
'recall': recall,
'f1': f1_score
}
def is_in(target, collection: Iterable, eq_fn=eq) -> bool:
for item in collection:
if eq_fn(item, target):
return True
return False |