File size: 4,835 Bytes
3cc354a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e31d84c
a15530e
e08ee6c
3cc354a
 
8c5c6b9
7bf3ed0
 
 
3cc354a
 
 
 
 
 
 
 
 
 
 
 
 
8c5c6b9
3cc354a
 
 
 
 
 
 
 
 
 
 
e31d84c
3cc354a
e31d84c
 
 
3cc354a
e31d84c
 
3cc354a
e31d84c
3cc354a
 
a15530e
 
3cc354a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5c6b9
 
3cc354a
 
 
 
 
 
 
 
 
 
 
 
e31d84c
3cc354a
8c5c6b9
a15530e
8c5c6b9
 
 
 
a15530e
 
 
 
 
 
 
8c5c6b9
7bf3ed0
 
8c5c6b9
 
e31d84c
 
 
8c5c6b9
 
e31d84c
 
8c5c6b9
 
3cc354a
8c5c6b9
 
 
e31d84c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

from operator import eq
from typing import Callable, Iterable, Union

import evaluate
import datasets
import numpy as np
import logging

logger = logging.getLogger(__name__)


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
Computes precision, recall, f1 scores for joint entity-relation extraction task.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    eq_fn: function to compare two items. Defaults to the equality operator.
Returns:
    recall: 
    precision:
    f1:
Examples:
    >>> jer = evaluate.load("jer")
    >>> results = jer.compute(references=[["Baris | play | tennis", "Deniz | travel | London"]], predictions=[["Baris | play | tennis"]])
    >>> print(results)
    {'recall': 0.5, 'precision': 1.0, 'f1': 0.6666666666666666}
"""

Triplet = Union[str, tuple, int]

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class jer(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.features.Sequence(datasets.Value('string')),
                'references': datasets.features.Sequence(datasets.Value('string')),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        pass

    def _compute(self, predictions, references, eq_fn=eq):
        """Returns the scores"""
        score_dicts = [
            self._compute_single(prediction=prediction, reference=reference, eq_fn=eq_fn) 
            for prediction, reference in zip(predictions, references)
        ]
        return {('mean_' + key): np.mean([scores[key] for scores in score_dicts]) for key in score_dicts[0].keys()}
    
    def _compute_single(
            self, 
            *, 
            prediction: Iterable[Triplet], 
            reference: Iterable[Triplet], 
            eq_fn: Callable[[Triplet, Triplet], bool],
        ):
        reference_set = set(reference)
        if len(reference) != len(reference_set):
            logger.warn(f"Duplicates found in the reference list {reference}")
        prediction_set = set(prediction)

        tp = sum(int(is_in(item, prediction, eq_fn=eq_fn)) for item in reference)
        fp = len(prediction_set) - tp
        fn = len(reference_set) - tp
        
        # Calculate metrics
        precision = tp / (tp + fp) if tp + fp > 0 else 0
        recall = tp / (tp + fn) if tp + fn > 0 else 0
        f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
        
        return {
            'precision': precision,
            'recall': recall,
            'f1': f1_score
        }

def is_in(target, collection: Iterable, eq_fn=eq) -> bool:
    for item in collection:
        if eq_fn(item, target):
            return True
    return False