Spaces:
Runtime error
Runtime error
# pylint: disable=global-statement | |
import os | |
import io | |
import math | |
import base64 | |
import numpy as np | |
import mediapipe as mp | |
from PIL import Image, ImageOps | |
from pi_heif import register_heif_opener | |
from skimage.metrics import structural_similarity as ssim | |
from scipy.stats import beta | |
import util | |
import sdapi | |
import options | |
face_model = None | |
body_model = None | |
segmentation_model = None | |
all_images = [] | |
all_images_by_type = {} | |
class Result(): | |
def __init__(self, typ: str, fn: str, tag: str = None, requested: list = []): | |
self.type = typ | |
self.input = fn | |
self.output = '' | |
self.basename = '' | |
self.message = '' | |
self.image = None | |
self.caption = '' | |
self.tag = tag | |
self.tags = [] | |
self.ops = [] | |
self.steps = requested | |
def detect_blur(image: Image): | |
# based on <https://github.com/karthik9319/Blur-Detection/> | |
bw = ImageOps.grayscale(image) | |
cx, cy = image.size[0] // 2, image.size[1] // 2 | |
fft = np.fft.fft2(bw) | |
fftShift = np.fft.fftshift(fft) | |
fftShift[cy - options.process.blur_samplesize: cy + options.process.blur_samplesize, cx - options.process.blur_samplesize: cx + options.process.blur_samplesize] = 0 | |
fftShift = np.fft.ifftshift(fftShift) | |
recon = np.fft.ifft2(fftShift) | |
magnitude = np.log(np.abs(recon)) | |
mean = round(np.mean(magnitude), 2) | |
return mean | |
def detect_dynamicrange(image: Image): | |
# based on <https://towardsdatascience.com/measuring-enhancing-image-quality-attributes-234b0f250e10> | |
data = np.asarray(image) | |
image = np.float32(data) | |
RGB = [0.299, 0.587, 0.114] | |
height, width = image.shape[:2] # pylint: disable=unsubscriptable-object | |
brightness_image = np.sqrt(image[..., 0] ** 2 * RGB[0] + image[..., 1] ** 2 * RGB[1] + image[..., 2] ** 2 * RGB[2]) # pylint: disable=unsubscriptable-object | |
hist, _ = np.histogram(brightness_image, bins=256, range=(0, 255)) | |
img_brightness_pmf = hist / (height * width) | |
dist = beta(2, 2) | |
ys = dist.pdf(np.linspace(0, 1, 256)) | |
ref_pmf = ys / np.sum(ys) | |
dot_product = np.dot(ref_pmf, img_brightness_pmf) | |
squared_dist_a = np.sum(ref_pmf ** 2) | |
squared_dist_b = np.sum(img_brightness_pmf ** 2) | |
res = dot_product / math.sqrt(squared_dist_a * squared_dist_b) | |
return round(res, 2) | |
def detect_simmilar(image: Image): | |
img = image.resize((options.process.similarity_size, options.process.similarity_size)) | |
img = ImageOps.grayscale(img) | |
data = np.array(img) | |
similarity = 0 | |
for i in all_images: | |
val = ssim(data, i, data_range=255, channel_axis=None, gradient=False, full=False) | |
if val > similarity: | |
similarity = val | |
all_images.append(data) | |
return similarity | |
def segmentation(res: Result): | |
global segmentation_model | |
if segmentation_model is None: | |
segmentation_model = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=options.process.segmentation_model) | |
data = np.array(res.image) | |
results = segmentation_model.process(data) | |
condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > 0.1 | |
background = np.zeros(data.shape, dtype=np.uint8) | |
background[:] = options.process.segmentation_background | |
data = np.where(condition, data, background) # consider using a joint bilateral filter instead of pure combine | |
segmented = Image.fromarray(data) | |
res.image = segmented | |
res.ops.append('segmentation') | |
return res | |
def unload(): | |
global face_model | |
if face_model is not None: | |
face_model = None | |
global body_model | |
if body_model is not None: | |
body_model = None | |
global segmentation_model | |
if segmentation_model is not None: | |
segmentation_model = None | |
def encode(img): | |
with io.BytesIO() as stream: | |
img.save(stream, 'JPEG') | |
values = stream.getvalue() | |
encoded = base64.b64encode(values).decode() | |
return encoded | |
def reset(): | |
unload() | |
global all_images_by_type | |
all_images_by_type = {} | |
global all_images | |
all_images = [] | |
def upscale_restore_image(res: Result, upscale: bool = False, restore: bool = False): | |
kwargs = util.Map({ | |
'image': encode(res.image), | |
'codeformer_visibility': 0.0, | |
'codeformer_weight': 0.0, | |
}) | |
if res.image.width >= options.process.target_size and res.image.height >= options.process.target_size: | |
upscale = False | |
if upscale: | |
kwargs.upscaler_1 = 'SwinIR_4x' | |
kwargs.upscaling_resize = 2 | |
res.ops.append('upscale') | |
if restore: | |
kwargs.codeformer_visibility = 1.0 | |
kwargs.codeformer_weight = 0.2 | |
res.ops.append('restore') | |
if upscale or restore: | |
result = sdapi.postsync('/sdapi/v1/extra-single-image', kwargs) | |
if 'image' not in result: | |
res.message = 'failed to upscale/restore image' | |
else: | |
res.image = Image.open(io.BytesIO(base64.b64decode(result['image']))) | |
return res | |
def interrogate_image(res: Result, tag: str = None): | |
caption = '' | |
tags = [] | |
for model in options.process.interrogate_model: | |
json = util.Map({ 'image': encode(res.image), 'model': model }) | |
result = sdapi.postsync('/sdapi/v1/interrogate', json) | |
if model == 'clip': | |
caption = result.caption if 'caption' in result else '' | |
caption = caption.split(',')[0].replace(' a ', ' ').strip() | |
if tag is not None: | |
caption = res.tag + ', ' + caption | |
if model == 'deepdanbooru': | |
tag = result.caption if 'caption' in result else '' | |
tags = tag.split(',') | |
tags = [t.replace('(', '').replace(')', '').replace('\\', '').split(':')[0].strip() for t in tags] | |
if tag is not None: | |
for t in res.tag.split(',')[::-1]: | |
tags.insert(0, t.strip()) | |
pos = 0 if len(tags) == 0 else 1 | |
tags.insert(pos, caption.split(' ')[1]) | |
tags = [t for t in tags if len(t) > 2] | |
if len(tags) > options.process.tag_limit: | |
tags = tags[:options.process.tag_limit] | |
res.caption = caption | |
res.tags = tags | |
res.ops.append('interrogate') | |
return res | |
def resize_image(res: Result): | |
resized = res.image | |
resized.thumbnail((options.process.target_size, options.process.target_size), Image.Resampling.HAMMING) | |
res.image = resized | |
res.ops.append('resize') | |
return res | |
def square_image(res: Result): | |
size = max(res.image.width, res.image.height) | |
squared = Image.new('RGB', (size, size)) | |
squared.paste(res.image, ((size - res.image.width) // 2, (size - res.image.height) // 2)) | |
res.image = squared | |
res.ops.append('square') | |
return res | |
def process_face(res: Result): | |
res.ops.append('face') | |
global face_model | |
if face_model is None: | |
face_model = mp.solutions.face_detection.FaceDetection(min_detection_confidence=options.process.face_score, model_selection=options.process.face_model) | |
results = face_model.process(np.array(res.image)) | |
if results.detections is None: | |
res.message = 'no face detected' | |
res.image = None | |
return res | |
box = results.detections[0].location_data.relative_bounding_box | |
if box.xmin < 0 or box.ymin < 0 or (box.width - box.xmin) > 1 or (box.height - box.ymin) > 1: | |
res.message = 'face out of frame' | |
res.image = None | |
return res | |
x = max(0, (box.xmin - options.process.face_pad / 2) * res.image.width) | |
y = max(0, (box.ymin - options.process.face_pad / 2)* res.image.height) | |
w = min(res.image.width, (box.width + options.process.face_pad) * res.image.width) | |
h = min(res.image.height, (box.height + options.process.face_pad) * res.image.height) | |
x = max(0, x) | |
res.image = res.image.crop((x, y, x + w, y + h)) | |
return res | |
def process_body(res: Result): | |
res.ops.append('body') | |
global body_model | |
if body_model is None: | |
body_model = mp.solutions.pose.Pose(static_image_mode=True, min_detection_confidence=options.process.body_score, model_complexity=options.process.body_model) | |
results = body_model.process(np.array(res.image)) | |
if results.pose_landmarks is None: | |
res.message = 'no body detected' | |
res.image = None | |
return res | |
x0 = [res.image.width * (i.x - options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility] | |
y0 = [res.image.height * (i.y - options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility] | |
x1 = [res.image.width * (i.x + options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility] | |
y1 = [res.image.height * (i.y + options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility] | |
if len(x0) < options.process.body_parts: | |
res.message = f'insufficient body parts detected: {len(x0)}' | |
res.image = None | |
return res | |
res.image = res.image.crop((max(0, min(x0)), max(0, min(y0)), min(res.image.width, max(x1)), min(res.image.height, max(y1)))) | |
return res | |
def process_original(res: Result): | |
res.ops.append('original') | |
return res | |
def save_image(res: Result, folder: str): | |
if res.image is None or folder is None: | |
return res | |
all_images_by_type[res.type] = all_images_by_type.get(res.type, 0) + 1 | |
res.basename = os.path.basename(res.input).split('.')[0] | |
res.basename = str(all_images_by_type[res.type]).rjust(3, '0') + '-' + res.type + '-' + res.basename | |
res.basename = os.path.join(folder, res.basename) | |
res.output = res.basename + options.process.format | |
res.image.save(res.output) | |
res.image.close() | |
res.ops.append('save') | |
return res | |
def file(filename: str, folder: str, tag = None, requested = []): | |
# initialize result dict | |
res = Result(fn = filename, typ='unknown', tag=tag, requested = requested) | |
# open image | |
try: | |
register_heif_opener() | |
res.image = Image.open(filename) | |
if res.image.mode == 'RGBA': | |
res.image = res.image.convert('RGB') | |
res.image = ImageOps.exif_transpose(res.image) # rotate image according to EXIF orientation | |
except Exception as e: | |
res.message = f'error opening: {e}' | |
return res | |
# primary steps | |
if 'face' in requested: | |
res.type = 'face' | |
res = process_face(res) | |
elif 'body' in requested: | |
res.type = 'body' | |
res = process_body(res) | |
elif 'original' in requested: | |
res.type = 'original' | |
res = process_original(res) | |
# validation steps | |
if res.image is None: | |
return res | |
if 'blur' in requested: | |
res.ops.append('blur') | |
val = detect_blur(res.image) | |
if val > options.process.blur_score: | |
res.message = f'blur check failed: {val}' | |
res.image = None | |
if 'range' in requested: | |
res.ops.append('range') | |
val = detect_dynamicrange(res.image) | |
if val < options.process.range_score: | |
res.message = f'dynamic range check failed: {val}' | |
res.image = None | |
if 'similarity' in requested: | |
res.ops.append('similarity') | |
val = detect_simmilar(res.image) | |
if val > options.process.similarity_score: | |
res.message = f'dynamic range check failed: {val}' | |
res.image = None | |
if res.image is None: | |
return res | |
# post processing steps | |
res = upscale_restore_image(res, 'upscale' in requested, 'restore' in requested) | |
if res.image.width < options.process.target_size or res.image.height < options.process.target_size: | |
res.message = f'low resolution: [{res.image.width}, {res.image.height}]' | |
res.image = None | |
return res | |
if 'interrogate' in requested: | |
res = interrogate_image(res, tag) | |
if 'resize' in requested: | |
res = resize_image(res) | |
if 'square' in requested: | |
res = square_image(res) | |
if 'segment' in requested: | |
res = segmentation(res) | |
# finally save image | |
res = save_image(res, folder) | |
return res | |