test / cli /train.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
#!/usr/bin/env python
"""
Examples:
- sd15: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --process original,interrogate,resize --name mia
- sdxl: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --process original,interrogate,resize --precision fp32 --optimizer Adafactor --sdxl --name miaxl
- offline: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --model /home/vlado/dev/sdnext/models/Stable-diffusion/sdxl/miaanimeSFWNSFWSDXL_v40.safetensors --dir /home/vlado/dev/sdnext/models/Lora/ --precision fp32 --optimizer Adafactor --sdxl --name miaxl
"""
# system imports
import os
import re
import gc
import sys
import json
import shutil
import pathlib
import asyncio
import logging
import tempfile
import argparse
# local imports
import util
import sdapi
import options
# globals
args = None
log = logging.getLogger('train')
valid_steps = ['original', 'face', 'body', 'blur', 'range', 'upscale', 'restore', 'interrogate', 'resize', 'square', 'segment']
log_file = os.path.join(os.path.dirname(__file__), 'train.log')
server_ok = False
# methods
def setup_logging():
from rich.theme import Theme
from rich.logging import RichHandler
from rich.console import Console
from rich.pretty import install as pretty_install
from rich.traceback import install as traceback_install
console = Console(log_time=True, log_time_format='%H:%M:%S-%f', theme=Theme({
"traceback.border": "black",
"traceback.border.syntax_error": "black",
"inspect.value.border": "black",
}))
# logging.getLogger("urllib3").setLevel(logging.ERROR)
# logging.getLogger("httpx").setLevel(logging.ERROR)
level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(level=logging.ERROR, format='%(asctime)s | %(name)s | %(levelname)s | %(module)s | %(message)s', filename=log_file, filemode='a', encoding='utf-8', force=True)
log.setLevel(logging.DEBUG) # log to file is always at level debug for facility `sd`
pretty_install(console=console)
traceback_install(console=console, extra_lines=1, width=console.width, word_wrap=False, indent_guides=False, suppress=[])
rh = RichHandler(show_time=True, omit_repeated_times=False, show_level=True, show_path=False, markup=False, rich_tracebacks=True, log_time_format='%H:%M:%S-%f', level=level, console=console)
rh.set_name(level)
while log.hasHandlers() and len(log.handlers) > 0:
log.removeHandler(log.handlers[0])
log.addHandler(rh)
def mem_stats():
gc.collect()
import torch
if torch.cuda.is_available():
with torch.no_grad():
torch.cuda.empty_cache()
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
mem = util.get_memory()
peak = { 'active': mem['gpu-active']['peak'], 'allocated': mem['gpu-allocated']['peak'], 'reserved': mem['gpu-reserved']['peak'] }
log.debug(f"memory cpu: {mem.ram} gpu current: {mem.gpu} gpu peak: {peak}")
def parse_args():
global args # pylint: disable=global-statement
parser = argparse.ArgumentParser(description = 'SD.Next Train')
group_server = parser.add_argument_group('Server')
group_server.add_argument('--server', type=str, default='http://127.0.0.1:7860', required=False, help='server url, default: %(default)s')
group_server.add_argument('--user', type=str, default=None, required=False, help='server url, default: %(default)s')
group_server.add_argument('--password', type=str, default=None, required=False, help='server url, default: %(default)s')
group_server.add_argument('--dir', type=str, default=None, required=False, help='folder with trained networks, default: use server setting')
group_main = parser.add_argument_group('Main')
group_main.add_argument('--type', type=str, choices=['embedding', 'ti', 'lora', 'lyco', 'dreambooth', 'hypernetwork'], default=None, required=True, help='training type')
group_main.add_argument('--model', type=str, default='', required=False, help='base model to use for training, default: current loaded model')
group_main.add_argument('--name', type=str, default=None, required=True, help='output filename')
group_main.add_argument('--tag', type=str, default='person', required=False, help='primary tags, default: %(default)s')
group_main.add_argument('--comments', type=str, default='', required=False, help='comments to be added to trained model metadata, default: %(default)s')
group_data = parser.add_argument_group('Dataset')
group_data.add_argument('--input', type=str, default=None, required=True, help='input folder with training images')
group_data.add_argument('--interim', type=str, default='', required=False, help='where to store processed images, default is system temp/train')
group_data.add_argument('--process', type=str, default='original,interrogate,resize,square', required=False, help=f'list of possible processing steps: {valid_steps}, default: %(default)s')
group_train = parser.add_argument_group('Train')
group_train.add_argument('--gradient', type=int, default=1, required=False, help='gradient accumulation steps, default: %(default)s')
group_train.add_argument('--steps', type=int, default=2500, required=False, help='training steps, default: %(default)s')
group_train.add_argument('--batch', type=int, default=1, required=False, help='batch size, default: %(default)s')
group_train.add_argument('--lr', type=float, default=1e-04, required=False, help='model learning rate, default: %(default)s')
group_train.add_argument('--dim', type=int, default=32, required=False, help='network dimension or number of vectors, default: %(default)s')
# lora params
group_train.add_argument('--repeats', type=int, default=1, required=False, help='number of repeats per image, default: %(default)s')
group_train.add_argument('--alpha', type=float, default=0, required=False, help='lora/lyco alpha for weights scaling, default: dim/2')
group_train.add_argument('--algo', type=str, default=None, choices=['locon', 'loha', 'lokr', 'ia3'], required=False, help='alternative lyco algoritm, default: %(default)s')
group_train.add_argument('--args', type=str, default=None, required=False, help='lora/lyco additional network arguments, default: %(default)s')
group_train.add_argument('--optimizer', type=str, default='AdamW', required=False, help='optimizer type, default: %(default)s')
group_train.add_argument('--precision', type=str, choices=['fp16', 'fp32'], default='fp16', required=False, help='training precision, default: %(default)s')
group_train.add_argument('--sdxl', default = False, action='store_true', help = "run sdxl training, default: %(default)s")
# AdamW (default), AdamW8bit, PagedAdamW8bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor
group_other = parser.add_argument_group('Other')
group_other.add_argument('--overwrite', default = False, action='store_true', help = "overwrite existing training, default: %(default)s")
group_other.add_argument('--experimental', default = False, action='store_true', help = "enable experimental options, default: %(default)s")
group_other.add_argument('--debug', default = False, action='store_true', help = "enable debug level logging, default: %(default)s")
args = parser.parse_args()
def prepare_server():
global server_ok # pylint: disable=global-statement
try:
server_status = util.Map(sdapi.progresssync())
server_state = server_status['state']
server_ok = True
except Exception:
log.warning(f'sdnext server error: {server_status}')
server_ok = False
if server_ok and server_state['job_count'] > 0:
log.error(f'sdnext server not idle: {server_state}')
exit(1)
if server_ok:
server_options = util.Map(sdapi.options())
server_options.options.save_training_settings_to_txt = False
server_options.options.training_enable_tensorboard = False
server_options.options.training_tensorboard_save_images = False
server_options.options.pin_memory = True
server_options.options.save_optimizer_state = False
server_options.options.training_image_repeats_per_epoch = args.repeats
server_options.options.training_write_csv_every = 0
sdapi.postsync('/sdapi/v1/options', server_options.options)
log.info('updated server options')
def verify_args():
server_options = util.Map(sdapi.options())
if args.model != '':
if not os.path.isfile(args.model):
log.error(f'cannot find loaded model: {args.model}')
exit(1)
if server_ok:
server_options.options.sd_model_checkpoint = args.model
sdapi.postsync('/sdapi/v1/options', server_options.options)
elif server_ok:
args.model = server_options.options.sd_model_checkpoint.split(' [')[0]
if args.sdxl and (server_options.sd_backend != 'diffusers' or server_options.diffusers_pipeline != 'Stable Diffusion XL'):
log.warning('server checkpoint is not sdxl')
else:
log.error('no model specified')
exit(1)
base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if args.type == 'lora' and not server_ok and not args.dir:
log.error('offline lora training requires --dir <lora folder>')
exit(1)
if args.type == 'lora':
import transformers
if transformers.__version__ != '4.30.2':
log.error(f'lora training requires specific transformers version: current {transformers.__version__} required transformers==4.30.2')
exit(1)
args.lora_dir = server_options.options.lora_dir or args.dir
if not os.path.isabs(args.lora_dir):
args.lora_dir = os.path.join(base_dir, args.lora_dir)
args.lyco_dir = server_options.options.lyco_dir or args.dir
if not os.path.isabs(args.lyco_dir):
args.lyco_dir = os.path.join(base_dir, args.lyco_dir)
args.embeddings_dir = server_options.options.embeddings_dir or args.dir
if not os.path.isfile(args.model):
args.ckpt_dir = server_options.options.ckpt_dir
if not os.path.isabs(args.ckpt_dir):
args.ckpt_dir = os.path.join(base_dir, args.ckpt_dir)
attempt = os.path.abspath(os.path.join(args.ckpt_dir, args.model))
args.model = attempt if os.path.isfile(attempt) else args.model
if not os.path.isfile(args.model):
attempt = os.path.abspath(os.path.join(args.ckpt_dir, args.model + '.safetensors'))
args.model = attempt if os.path.isfile(attempt) else args.model
if not os.path.isfile(args.model):
log.error(f'cannot find loaded model: {args.model}')
exit(1)
if not os.path.exists(args.input) or not os.path.isdir(args.input):
log.error(f'cannot find training folder: {args.input}')
exit(1)
if not os.path.exists(args.lora_dir) or not os.path.isdir(args.lora_dir):
log.error(f'cannot find lora folder: {args.lora_dir}')
exit(1)
if not os.path.exists(args.lyco_dir) or not os.path.isdir(args.lyco_dir):
log.error(f'cannot find lyco folder: {args.lyco_dir}')
exit(1)
if args.interim != '':
args.process_dir = args.interim
else:
args.process_dir = os.path.join(tempfile.gettempdir(), 'train', args.name)
log.debug(f'args: {vars(args)}')
log.debug(f'server flags: {server_options.flags}')
log.debug(f'server options: {server_options.options}')
async def training_loop():
async def async_train():
res = await sdapi.post('/sdapi/v1/train/embedding', options.embedding)
log.info(f'train embedding result: {res}')
async def async_monitor():
from tqdm.rich import tqdm
await asyncio.sleep(3)
res = util.Map(sdapi.progress())
with tqdm(desc='train embedding', total=res.state.job_count) as pbar:
while res.state.job_no < res.state.job_count and not res.state.interrupted and not res.state.skipped:
await asyncio.sleep(2)
prev_job = res.state.job_no
res = util.Map(sdapi.progress())
loss = re.search(r"Loss: (.*?)(?=\<)", res.textinfo)
if loss:
pbar.set_postfix({ 'loss': loss.group(0) })
pbar.update(res.state.job_no - prev_job)
a = asyncio.create_task(async_train())
b = asyncio.create_task(async_monitor())
await asyncio.gather(a, b) # wait for both pipeline and monitor to finish
def train_embedding():
log.info(f'{args.type} options: {options.embedding}')
create_options = util.Map({
"name": args.name,
"num_vectors_per_token": args.dim,
"overwrite_old": False,
"init_text": args.tag,
})
fn = os.path.join(args.embeddings_dir, args.name) + '.pt'
if os.path.exists(fn) and args.overwrite:
log.warning(f'delete existing embedding {fn}')
os.remove(fn)
else:
log.error(f'embedding exists {fn}')
return
log.info(f'create embedding {create_options}')
res = sdapi.postsync('/sdapi/v1/create/embedding', create_options)
if 'info' in res and 'error' in res['info']: # formatted error
log.error(res.info)
elif 'info' in res: # no error
asyncio.run(training_loop())
else: # unknown error
log.error(f'create embedding error {res}')
def train_lora():
fn = os.path.join(options.lora.output_dir, args.name)
for ext in ['.ckpt', '.pt', '.safetensors']:
if os.path.exists(fn + ext):
if args.overwrite:
log.warning(f'delete existing lora: {fn + ext}')
os.remove(fn + ext)
else:
log.error(f'lora exists: {fn + ext}')
return
log.info(f'{args.type} options: {options.lora}')
# lora imports
lora_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lora'))
lycoris_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lycoris'))
sys.path.append(lora_path)
if args.type == 'lyco':
sys.path.append(lycoris_path)
log.debug('importing lora lib')
if not args.sdxl:
import train_network
trainer = train_network.NetworkTrainer()
trainer.train(options.lora)
else:
import sdxl_train_network
trainer = sdxl_train_network.SdxlNetworkTrainer()
trainer.train(options.lora)
if args.type == 'lyco':
log.debug('importing lycoris lib')
import importlib
_network_module = importlib.import_module(options.lora.network_module)
def prepare_options():
if args.type == 'embedding':
log.info('train embedding')
options.lora.in_json = None
if args.type == 'dreambooth':
log.info('train using dreambooth style training')
options.lora.vae_batch_size = args.batch
options.lora.in_json = None
if args.type == 'lora':
log.info('train using lora style training')
options.lora.output_dir = args.lora_dir
options.lora.in_json = os.path.join(args.process_dir, args.name + '.json')
if args.type == 'lyco':
log.info('train using lycoris network')
options.lora.output_dir = args.lora_dir
options.lora.network_module = 'lycoris.kohya'
options.lora.in_json = os.path.join(args.process_dir, args.name + '.json')
# lora specific
options.lora.save_model_as = 'safetensors'
options.lora.pretrained_model_name_or_path = args.model
options.lora.output_name = args.name
options.lora.max_train_steps = args.steps
options.lora.network_dim = args.dim
options.lora.network_alpha = args.dim // 2 if args.alpha == 0 else args.alpha
options.lora.network_args = []
options.lora.training_comment = args.comments
options.lora.sdpa = True
options.lora.optimizer_type = args.optimizer
if args.algo is not None:
options.lora.network_args.append(f'algo={args.algo}')
if args.args is not None:
for net_arg in args.args:
options.lora.network_args.append(net_arg)
options.lora.gradient_accumulation_steps = args.gradient
options.lora.learning_rate = args.lr
options.lora.train_batch_size = args.batch
options.lora.train_data_dir = args.process_dir
options.lora.no_half_vae = args.precision == 'fp16'
# embedding specific
options.embedding.embedding_name = args.name
options.embedding.learn_rate = str(args.lr)
options.embedding.batch_size = args.batch
options.embedding.steps = args.steps
options.embedding.data_root = args.process_dir
options.embedding.log_directory = os.path.join(args.process_dir, 'log')
options.embedding.gradient_step = args.gradient
def process_inputs():
import process
import filetype
pathlib.Path(args.process_dir).mkdir(parents=True, exist_ok=True)
processing_options = args.process.split(',') if isinstance(args.process, str) else args.process
processing_options = [opt.strip() for opt in re.split(',| ', args.process)]
log.info(f'processing steps: {processing_options}')
for step in processing_options:
if step not in valid_steps:
log.error(f'invalid processing step: {[step]}')
exit(1)
for root, _sub_dirs, folder in os.walk(args.input):
files = [os.path.join(root, f) for f in folder if filetype.is_image(os.path.join(root, f))]
log.info(f'processing input images: {len(files)}')
if os.path.exists(args.process_dir):
if args.overwrite:
log.warning(f'removing existing processed folder: {args.process_dir}')
shutil.rmtree(args.process_dir, ignore_errors=True)
else:
log.info(f'processed folder exists: {args.process_dir}')
steps = [step for step in processing_options if step in ['face', 'body', 'original']]
process.reset()
options.process.target_size = 1024 if args.sdxl else 512
metadata = {}
for step in steps:
if step == 'face':
opts = [step for step in processing_options if step not in ['body', 'original']]
if step == 'body':
opts = [step for step in processing_options if step not in ['face', 'original', 'upscale', 'restore']] # body does not perform upscale or restore
if step == 'original':
opts = [step for step in processing_options if step not in ['face', 'body', 'upscale', 'restore', 'blur', 'range', 'segment']] # original does not perform most steps
log.info(f'processing current step: {opts}')
tag = step
if tag == 'original' and args.tag is not None:
concept = args.tag.split(',')[0].strip()
else:
concept = step
if args.type in ['lora', 'lyco', 'dreambooth']:
folder = os.path.join(args.process_dir, str(args.repeats) + '_' + concept) # separate concepts per folder
if args.type in ['embedding']:
folder = os.path.join(args.process_dir) # everything into same folder
log.info(f'processing concept: {concept}')
log.info(f'processing output folder: {folder}')
pathlib.Path(folder).mkdir(parents=True, exist_ok=True)
results = {}
if server_ok:
for f in files:
res = process.file(filename = f, folder = folder, tag = args.tag, requested = opts)
if res.image: # valid result
results[res.type] = results.get(res.type, 0) + 1
results['total'] = results.get('total', 0) + 1
rel_path = res.basename.replace(os.path.commonpath([res.basename, args.process_dir]), '')
if rel_path.startswith(os.path.sep):
rel_path = rel_path[1:]
metadata[rel_path] = { 'caption': res.caption, 'tags': ','.join(res.tags) }
if options.lora.in_json is None:
with open(res.output.replace(options.process.format, '.txt'), "w", encoding='utf-8') as outfile:
outfile.write(res.caption)
log.info(f"processing {'saved' if res.image is not None else 'skipped'}: {f} => {res.output} {res.ops} {res.message}")
else:
log.info('processing skipped: offline')
folders = [os.path.join(args.process_dir, folder) for folder in os.listdir(args.process_dir) if os.path.isdir(os.path.join(args.process_dir, folder))]
log.info(f'input datasets {folders}')
if options.lora.in_json is not None:
with open(options.lora.in_json, "w", encoding='utf-8') as outfile: # write json at the end only
outfile.write(json.dumps(metadata, indent=2))
for folder in folders: # create latents
import latents
latents.create_vae_latents(util.Map({ 'input': folder, 'json': options.lora.in_json }))
latents.unload_vae()
r = { 'inputs': len(files), 'outputs': results, 'metadata': options.lora.in_json }
log.info(f'processing steps result: {r}')
if args.gradient < 0:
log.info(f"setting gradient accumulation to number of images: {results['total']}")
options.lora.gradient_accumulation_steps = results['total']
options.embedding.gradient_step = results['total']
process.unload()
if __name__ == '__main__':
parse_args()
setup_logging()
log.info('SD.Next Train')
sdapi.sd_url = args.server
if args.user is not None:
sdapi.sd_username = args.user
if args.password is not None:
sdapi.sd_password = args.password
prepare_server()
verify_args()
prepare_options()
mem_stats()
process_inputs()
mem_stats()
try:
if args.type == 'embedding':
train_embedding()
if args.type == 'lora' or args.type == 'lyco' or args.type == 'dreambooth':
train_lora()
except KeyboardInterrupt:
log.error('interrupt requested')
sdapi.interrupt()
mem_stats()
log.info('done')