Spaces:
Runtime error
Runtime error
import os | |
from urllib.parse import urlparse | |
import cv2 | |
import torch | |
import numpy as np | |
from torch.hub import download_url_to_file, get_dir | |
from PIL import Image | |
from modules import devices | |
from modules.shared import log | |
LAMA_MODEL_URL = "https://github.com/enesmsahin/simple-lama-inpainting/releases/download/v0.1.0/big-lama.pt" | |
def prepare_img_and_mask(image, mask, device, pad_out_to_modulo=8, scale_factor=None): | |
def ceil_modulo(x, mod): | |
if x % mod == 0: | |
return x | |
return (x // mod + 1) * mod | |
def get_image(img): | |
if isinstance(img, Image.Image): | |
img = np.array(img) | |
if img.ndim == 3: | |
img = np.transpose(img, (2, 0, 1)) # chw | |
elif img.ndim == 2: | |
img = img[np.newaxis, ...] | |
img = img.astype(np.float32) / 255 | |
return img | |
def pad_img_to_modulo(img, mod): | |
_channels, height, width = img.shape | |
out_height = ceil_modulo(height, mod) | |
out_width = ceil_modulo(width, mod) | |
return np.pad( | |
img, | |
((0, 0), (0, out_height - height), (0, out_width - width)), | |
mode="symmetric", | |
) | |
def scale_image(img, factor, interpolation=cv2.INTER_AREA): | |
if img.shape[0] == 1: | |
img = img[0] | |
else: | |
img = np.transpose(img, (1, 2, 0)) | |
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation) | |
if img.ndim == 2: | |
img = img[None, ...] | |
else: | |
img = np.transpose(img, (2, 0, 1)) | |
return img | |
out_image = get_image(image) | |
out_mask = get_image(mask) | |
if scale_factor is not None: | |
out_image = scale_image(out_image, scale_factor) | |
out_mask = scale_image(out_mask, scale_factor, interpolation=cv2.INTER_NEAREST) | |
if pad_out_to_modulo is not None and pad_out_to_modulo > 1: | |
out_image = pad_img_to_modulo(out_image, pad_out_to_modulo) | |
out_mask = pad_img_to_modulo(out_mask, pad_out_to_modulo) | |
out_image = torch.from_numpy(out_image).unsqueeze(0).to(device) | |
out_mask = torch.from_numpy(out_mask).unsqueeze(0).to(device) | |
out_mask = (out_mask > 0) * 1 | |
return out_image, out_mask | |
def download_model(): | |
parts = urlparse(LAMA_MODEL_URL) | |
hub_dir = get_dir() | |
model_dir = os.path.join(hub_dir, "checkpoints") | |
os.makedirs(os.path.join(model_dir, "hub", "checkpoints"), exist_ok=True) | |
filename = os.path.basename(parts.path) | |
cached_file = os.path.join(model_dir, filename) | |
if not os.path.exists(cached_file): | |
log.info(f'LaMa download: url={LAMA_MODEL_URL} file={cached_file}') | |
hash_prefix = None | |
download_url_to_file(LAMA_MODEL_URL, cached_file, hash_prefix, progress=True) | |
return cached_file | |
class SimpleLama: | |
def __init__(self): | |
self.device = devices.device | |
model_path = download_model() | |
self.model = torch.jit.load(model_path, map_location=self.device) | |
self.model.eval() | |
self.model.to(self.device) | |
def __call__(self, image: Image.Image | np.ndarray, mask: Image.Image | np.ndarray): | |
if image is None: | |
log.warning('LaMa: image is none') | |
return None | |
if mask is None: | |
mask = Image.new('L', image.size, 0) | |
return None | |
image, mask = prepare_img_and_mask(image, mask, self.device) | |
with devices.inference_context(): | |
inpainted = self.model(image, mask) | |
cur_res = inpainted[0].permute(1, 2, 0).detach().float().cpu().numpy() | |
cur_res = np.clip(cur_res * 255, 0, 255).astype(np.uint8) | |
cur_res = Image.fromarray(cur_res) | |
return cur_res | |