test / modules /merging /merge.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import os
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from typing import Dict, Optional, Tuple, Set
import safetensors.torch
import torch
from tensordict import TensorDict
import modules.memstats
import modules.devices as devices
from modules.shared import log, console
from modules.sd_models import read_state_dict
from modules.merging import merge_methods
from modules.merging.merge_utils import WeightClass
from modules.merging.merge_rebasin import (
apply_permutation,
update_model_a,
weight_matching,
)
from modules.merging.merge_PermSpec import sdunet_permutation_spec
from modules.merging.merge_PermSpec_SDXL import sdxl_permutation_spec
##########################################################
# Files in modules.merging are heavily modified
# versions of sd-meh by @s1dxl used with his blessing
# orginal code can be found @ https://github.com/s1dlx/meh
##########################################################
MAX_TOKENS = 77
KEY_POSITION_IDS = ".".join(
[
"cond_stage_model",
"transformer",
"text_model",
"embeddings",
"position_ids",
]
)
def fix_clip(model: Dict) -> Dict:
if KEY_POSITION_IDS in model.keys():
model[KEY_POSITION_IDS] = torch.tensor(
[list(range(MAX_TOKENS))],
dtype=torch.int64,
device=model[KEY_POSITION_IDS].device,
)
return model
def prune_sd_model(model: Dict, keyset: Set) -> Dict:
keys = list(model.keys())
for k in keys:
if (
not k.startswith("model.diffusion_model.")
# and not k.startswith("first_stage_model.")
and not k.startswith("cond_stage_model.")
) or k not in keyset:
del model[k]
return model
def restore_sd_model(original_model: Dict, merged_model: Dict) -> Dict:
for k in original_model:
if k not in merged_model:
merged_model[k] = original_model[k]
return merged_model
def log_vram(txt=""):
log.debug(f"Merge {txt}: {modules.memstats.memory_stats()}")
def load_thetas(
models: Dict[str, os.PathLike],
prune: bool,
device: torch.device,
precision: str,
) -> Dict:
thetas = {k: TensorDict.from_dict(read_state_dict(m, "cpu")) for k, m in models.items()}
if prune:
keyset = set.intersection(*[set(m.keys()) for m in thetas.values() if len(m.keys())])
thetas = {k: prune_sd_model(m, keyset) for k, m in thetas.items()}
for model_key, model in thetas.items():
for key, block in model.items():
if precision == "fp16":
thetas[model_key].update({key: block.to(device).half()})
else:
thetas[model_key].update({key: block.to(device)})
log_vram("models loaded")
return thetas
def merge_models(
models: Dict[str, os.PathLike],
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
device: torch.device = None,
work_device: torch.device = None,
prune: bool = False,
threads: int = 4,
**kwargs,
) -> Dict:
thetas = load_thetas(models, prune, device, precision)
# log.info(f'Merge start: models={models.values()} precision={precision} clip={weights_clip} rebasin={re_basin} prune={prune} threads={threads}')
weight_matcher = WeightClass(thetas["model_a"], **kwargs)
if kwargs.get("re_basin", False):
merged = rebasin_merge(
thetas,
weight_matcher,
merge_mode,
precision=precision,
weights_clip=weights_clip,
iterations=kwargs.get("re_basin_iterations", 1),
device=device,
work_device=work_device,
threads=threads,
)
else:
merged = simple_merge(
thetas,
weight_matcher,
merge_mode,
precision=precision,
weights_clip=weights_clip,
device=device,
work_device=work_device,
threads=threads,
)
return un_prune_model(merged, thetas, models, device, prune, precision)
def un_prune_model(
merged: Dict,
thetas: Dict,
models: Dict,
device: torch.device,
prune: bool,
precision: str,
) -> Dict:
if prune:
log.info("Merge restoring pruned keys")
del thetas
devices.torch_gc(force=False)
original_a = TensorDict.from_dict(read_state_dict(models["model_a"], device))
unpruned = 0
for key in original_a.keys():
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in merged.keys():
merged.update({key: original_a[key]})
unpruned += 1
if precision == "fp16":
merged.update({key: merged[key].half()})
if unpruned > 248: # VAE has 248 keys, and we are purposely restoring it here
log.debug(f"Merge restored from primary model: keys={unpruned - 248}")
unpruned = 0
del original_a
original_b = TensorDict.from_dict(read_state_dict(models["model_b"], device))
for key in original_b.keys():
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in merged.keys():
merged.update({key: original_b[key]})
unpruned += 1
if precision == "fp16":
merged.update({key: merged[key].half()})
if unpruned != 0:
log.debug(f"Merge restored from secondary model: keys={unpruned}")
del original_b
devices.torch_gc(force=False)
return fix_clip(merged)
def simple_merge(
thetas: Dict[str, Dict],
weight_matcher: WeightClass,
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
device: torch.device = None,
work_device: torch.device = None,
threads: int = 4,
) -> Dict:
futures = []
# with tqdm(thetas["model_a"].keys(), desc="Merge") as progress:
import rich.progress as p
with p.Progress(p.TextColumn('[cyan]{task.description}'), p.BarColumn(), p.TaskProgressColumn(), p.TimeRemainingColumn(), p.TimeElapsedColumn(), p.TextColumn('[cyan]keys={task.fields[keys]}'), console=console) as progress:
task = progress.add_task(description="Merging", total=len(thetas["model_a"].keys()), keys=len(thetas["model_a"].keys()))
with ThreadPoolExecutor(max_workers=threads) as executor:
for key in thetas["model_a"].keys():
future = executor.submit(
simple_merge_key,
progress,
task,
key,
thetas,
weight_matcher,
merge_mode,
precision,
weights_clip,
device,
work_device,
)
futures.append(future)
for res in futures:
res.result()
if len(thetas["model_b"]) > 0:
log.debug(f'Merge update thetas: keys={len(thetas["model_b"])}')
for key in thetas["model_b"].keys():
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in thetas["model_a"].keys():
thetas["model_a"].update({key: thetas["model_b"][key]})
if precision == "fp16":
thetas["model_a"].update({key: thetas["model_a"][key].half()})
return fix_clip(thetas["model_a"])
def rebasin_merge(
thetas: Dict[str, os.PathLike],
weight_matcher: WeightClass,
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
iterations: int = 1,
device: torch.device = None,
work_device: torch.device = None,
threads: int = 1,
):
# not sure how this does when 3 models are involved...
model_a = thetas["model_a"].clone()
if weight_matcher.SDXL:
perm_spec = sdxl_permutation_spec()
else:
perm_spec = sdunet_permutation_spec()
for it in range(iterations):
log_vram(f"rebasin: iteration={it+1}")
weight_matcher.set_it(it)
# normal block merge we already know and love
thetas["model_a"] = simple_merge(
thetas,
weight_matcher,
merge_mode,
precision,
False,
device,
work_device,
threads,
)
# find permutations
perm_1, y = weight_matching(
perm_spec,
model_a,
thetas["model_a"],
max_iter=it,
init_perm=None,
usefp16=precision == "fp16",
device=device,
)
thetas["model_a"] = apply_permutation(perm_spec, perm_1, thetas["model_a"])
perm_2, z = weight_matching(
perm_spec,
thetas["model_b"],
thetas["model_a"],
max_iter=it,
init_perm=None,
usefp16=precision == "fp16",
device=device,
)
new_alpha = torch.nn.functional.normalize(
torch.sigmoid(torch.Tensor([y, z])), p=1, dim=0
).tolist()[0]
thetas["model_a"] = update_model_a(
perm_spec, perm_2, thetas["model_a"], new_alpha
)
if weights_clip:
clip_thetas = thetas.copy()
clip_thetas["model_a"] = model_a
thetas["model_a"] = clip_weights(thetas, thetas["model_a"])
return thetas["model_a"]
def simple_merge_key(progress, task, key, thetas, *args, **kwargs):
with merge_key_context(key, thetas, *args, **kwargs) as result:
if result is not None:
thetas["model_a"].update({key: result.detach().clone()})
progress.update(task, advance=1)
def merge_key( # pylint: disable=inconsistent-return-statements
key: str,
thetas: Dict,
weight_matcher: WeightClass,
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
device: torch.device = None,
work_device: torch.device = None,
) -> Optional[Tuple[str, Dict]]:
if work_device is None:
work_device = device
if KEY_POSITION_IDS in key:
return
for theta in thetas.values():
if key not in theta.keys():
return thetas["model_a"][key]
current_bases = weight_matcher(key)
try:
merge_method = getattr(merge_methods, merge_mode)
except AttributeError as e:
raise ValueError(f"{merge_mode} not implemented, aborting merge!") from e
merge_args = get_merge_method_args(current_bases, thetas, key, work_device)
# dealing with pix2pix and inpainting models
if (a_size := merge_args["a"].size()) != (b_size := merge_args["b"].size()):
if a_size[1] > b_size[1]:
merged_key = merge_args["a"]
else:
merged_key = merge_args["b"]
else:
merged_key = merge_method(**merge_args).to(device)
if weights_clip:
merged_key = clip_weights_key(thetas, merged_key, key)
if precision == "fp16":
merged_key = merged_key.half()
return merged_key
def clip_weights(thetas, merged):
for k in thetas["model_a"].keys():
if k in thetas["model_b"].keys():
merged.update({k: clip_weights_key(thetas, merged[k], k)})
return merged
def clip_weights_key(thetas, merged_weights, key):
t0 = thetas["model_a"][key]
t1 = thetas["model_b"][key]
maximums = torch.maximum(t0, t1)
minimums = torch.minimum(t0, t1)
return torch.minimum(torch.maximum(merged_weights, minimums), maximums)
@contextmanager
def merge_key_context(*args, **kwargs):
result = merge_key(*args, **kwargs)
try:
yield result
finally:
if result is not None:
del result
def get_merge_method_args(
current_bases: Dict,
thetas: Dict,
key: str,
work_device: torch.device,
) -> Dict:
merge_method_args = {
"a": thetas["model_a"][key].to(work_device),
"b": thetas["model_b"][key].to(work_device),
**current_bases,
}
if "model_c" in thetas:
merge_method_args["c"] = thetas["model_c"][key].to(work_device)
return merge_method_args
def save_model(model, output_file, file_format) -> None:
log.info(f"Merge saving: model='{output_file}'")
if file_format == "safetensors":
safetensors.torch.save_file(
model if type(model) == dict else model.to_dict(),
f"{output_file}.safetensors",
metadata={"format": "pt"},
)
else:
torch.save({"state_dict": model}, f"{output_file}.ckpt")