File size: 9,878 Bytes
cae4936
 
 
 
 
 
 
 
 
 
 
32613f0
cae4936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import clip
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import gdown
from typing import Tuple, List, Union, Optional
from transformers import (
    GPT2Tokenizer,
    GPT2LMHeadModel,
)
from tqdm import trange


N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]

D = torch.device
CPU = torch.device("cpu")


def download_pretrained_model(model, file_to_save):
    conceptual_wt = "14pXWwB4Zm82rsDdvbGguLfx9F8aM7ovT"
    coco_wt = "1IdaBtMSvtyzF0ByVaBHtvM0JYSXRExRX"

    # download pretrained weights
    if model == "coco":
        url = f"https://drive.google.com/uc?id={coco_wt}"
    elif model == "conceptual":
        url = f"https://drive.google.com/uc?id={conceptual_wt}"
    gdown.download(url, file_to_save, quiet=False)


class MLP(nn.Module):
    def forward(self, x: T) -> T:
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) - 1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)


class ClipCaptionModel(nn.Module):
    def get_dummy_token(self, batch_size: int, device: D) -> T:
        return torch.zeros(
            batch_size, self.prefix_length, dtype=torch.int64, device=device
        )

    def forward(
        self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None
    ):
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(prefix).view(
            -1, self.prefix_length, self.gpt_embedding_size
        )
        # print(embedding_text.size()) #torch.Size([5, 67, 768])
        # print(prefix_projections.size()) #torch.Size([5, 1, 768])
        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
        return out

    def __init__(self, prefix_length: int, prefix_size: int = 512):
        super(ClipCaptionModel, self).__init__()
        self.prefix_length = prefix_length
        self.gpt = GPT2LMHeadModel.from_pretrained("gpt2")
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        if prefix_length > 10:  # not enough memory
            self.clip_project = nn.Linear(
                prefix_size, self.gpt_embedding_size * prefix_length
            )
        else:
            self.clip_project = MLP(
                (
                    prefix_size,
                    (self.gpt_embedding_size * prefix_length) // 2,
                    self.gpt_embedding_size * prefix_length,
                )
            )


class ClipCaptionPrefix(ClipCaptionModel):
    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()
        return self


def generate_beam(
    model,
    tokenizer,
    beam_size: int = 5,
    prompt=None,
    embed=None,
    entry_length=67,
    temperature=1.0,
    stop_token: str = ".",
):

    model.eval()
    stop_token_index = tokenizer.encode(stop_token)[0]
    tokens = None
    scores = None
    device = next(model.parameters()).device
    seq_lengths = torch.ones(beam_size, device=device)
    is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
    with torch.no_grad():
        if embed is not None:
            generated = embed
        else:
            if tokens is None:
                tokens = torch.tensor(tokenizer.encode(prompt))
                tokens = tokens.unsqueeze(0).to(device)
                generated = model.gpt.transformer.wte(tokens)
        for i in range(entry_length):
            outputs = model.gpt(inputs_embeds=generated)
            logits = outputs.logits
            logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
            logits = logits.softmax(-1).log()
            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                generated = generated.expand(beam_size, *generated.shape[1:])
                next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
                if tokens is None:
                    tokens = next_tokens
                else:
                    tokens = tokens.expand(beam_size, *tokens.shape[1:])
                    tokens = torch.cat((tokens, next_tokens), dim=1)
            else:
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
                    beam_size, -1
                )
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                tokens = tokens[next_tokens_source]
                tokens = torch.cat((tokens, next_tokens), dim=1)
                generated = generated[next_tokens_source]
                scores = scores_sum_average * seq_lengths
                is_stopped = is_stopped[next_tokens_source]
            next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
                generated.shape[0], 1, -1
            )
            generated = torch.cat((generated, next_token_embed), dim=1)
            is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
            if is_stopped.all():
                break
    scores = scores / seq_lengths
    output_list = tokens.cpu().numpy()
    output_texts = [
        tokenizer.decode(output[: int(length)])
        for output, length in zip(output_list, seq_lengths)
    ]
    order = scores.argsort(descending=True)
    output_texts = [output_texts[i] for i in order]
    return output_texts


def generate2(
    model,
    tokenizer,
    tokens=None,
    prompt=None,
    embed=None,
    entry_count=1,
    entry_length=67,  # maximum number of words
    top_p=0.8,
    temperature=1.0,
    stop_token: str = ".",
):
    model.eval()
    generated_num = 0
    generated_list = []
    stop_token_index = tokenizer.encode(stop_token)[0]
    filter_value = -float("Inf")
    device = next(model.parameters()).device

    with torch.no_grad():

        for entry_idx in trange(entry_count):
            if embed is not None:
                generated = embed
            else:
                if tokens is None:
                    tokens = torch.tensor(tokenizer.encode(prompt))
                    tokens = tokens.unsqueeze(0).to(device)

                generated = model.gpt.transformer.wte(tokens)

            for i in range(entry_length):

                outputs = model.gpt(inputs_embeds=generated)
                logits = outputs.logits
                logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(
                    nnf.softmax(sorted_logits, dim=-1), dim=-1
                )
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
                    ..., :-1
                ].clone()
                sorted_indices_to_remove[..., 0] = 0

                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[:, indices_to_remove] = filter_value
                next_token = torch.argmax(logits, -1).unsqueeze(0)
                next_token_embed = model.gpt.transformer.wte(next_token)
                if tokens is None:
                    tokens = next_token
                else:
                    tokens = torch.cat((tokens, next_token), dim=1)
                generated = torch.cat((generated, next_token_embed), dim=1)
                if stop_token_index == next_token.item():
                    break

            output_list = list(tokens.squeeze().cpu().numpy())
            output_text = tokenizer.decode(output_list)
            generated_list.append(output_text)

    return generated_list[0]


def generate_caption(model_path, pil_image, use_beam_search):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

    prefix_length = 10

    model = ClipCaptionModel(prefix_length)
    model.load_state_dict(torch.load(model_path, map_location=CPU))
    model = model.eval()
    model = model.to(device)

    image = preprocess(pil_image).unsqueeze(0).to(device)
    with torch.no_grad():
        prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
        prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
    if use_beam_search:
        image_caption = generate_beam(model, tokenizer, embed=prefix_embed)[0]
    else:
        image_caption = generate2(model, tokenizer, embed=prefix_embed)

    return image_caption