Files changed (1) hide show
  1. app.py +19 -22
app.py CHANGED
@@ -1,30 +1,32 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- import spaces
5
  import torch
6
  from diffusers import DiffusionPipeline
7
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
 
11
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
- MAX_IMAGE_SIZE = 2048
15
 
16
  @spaces.GPU()
17
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
 
18
  if randomize_seed:
19
  seed = random.randint(0, MAX_SEED)
20
  generator = torch.Generator().manual_seed(seed)
 
 
21
  image = pipe(
22
- prompt = prompt,
23
- width = width,
24
- height = height,
25
- num_inference_steps = num_inference_steps,
26
- generator = generator,
27
- guidance_scale=0.0
28
  ).images[0]
29
  return image, seed
30
 
@@ -50,7 +52,6 @@ with gr.Blocks(css=css) as demo:
50
  """)
51
 
52
  with gr.Row():
53
-
54
  prompt = gr.Text(
55
  label="Prompt",
56
  show_label=False,
@@ -64,7 +65,6 @@ with gr.Blocks(css=css) as demo:
64
  result = gr.Image(label="Result", show_label=False)
65
 
66
  with gr.Accordion("Advanced Settings", open=False):
67
-
68
  seed = gr.Slider(
69
  label="Seed",
70
  minimum=0,
@@ -76,11 +76,10 @@ with gr.Blocks(css=css) as demo:
76
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
77
 
78
  with gr.Row():
79
-
80
  width = gr.Slider(
81
  label="Width",
82
  minimum=256,
83
- maximum=MAX_IMAGE_SIZE,
84
  step=32,
85
  value=1024,
86
  )
@@ -88,14 +87,12 @@ with gr.Blocks(css=css) as demo:
88
  height = gr.Slider(
89
  label="Height",
90
  minimum=256,
91
- maximum=MAX_IMAGE_SIZE,
92
  step=32,
93
  value=1024,
94
  )
95
 
96
  with gr.Row():
97
-
98
-
99
  num_inference_steps = gr.Slider(
100
  label="Number of inference steps",
101
  minimum=1,
@@ -105,18 +102,18 @@ with gr.Blocks(css=css) as demo:
105
  )
106
 
107
  gr.Examples(
108
- examples = examples,
109
- fn = infer,
110
- inputs = [prompt],
111
- outputs = [result, seed],
112
  cache_examples="lazy"
113
  )
114
 
115
  gr.on(
116
  triggers=[run_button.click, prompt.submit],
117
- fn = infer,
118
- inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
119
- outputs = [result, seed]
120
  )
121
 
122
  demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import torch
5
  from diffusers import DiffusionPipeline
6
 
7
  dtype = torch.bfloat16
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
+ # Load the pipeline with no hard size restrictions
11
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
 
14
 
15
  @spaces.GPU()
16
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
17
+ # Remove artificial size restrictions; allow the API to handle any size within hardware capacity
18
  if randomize_seed:
19
  seed = random.randint(0, MAX_SEED)
20
  generator = torch.Generator().manual_seed(seed)
21
+
22
+ # Process the image
23
  image = pipe(
24
+ prompt=prompt,
25
+ width=width,
26
+ height=height,
27
+ num_inference_steps=num_inference_steps,
28
+ generator=generator,
29
+ guidance_scale=0.0
30
  ).images[0]
31
  return image, seed
32
 
 
52
  """)
53
 
54
  with gr.Row():
 
55
  prompt = gr.Text(
56
  label="Prompt",
57
  show_label=False,
 
65
  result = gr.Image(label="Result", show_label=False)
66
 
67
  with gr.Accordion("Advanced Settings", open=False):
 
68
  seed = gr.Slider(
69
  label="Seed",
70
  minimum=0,
 
76
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
77
 
78
  with gr.Row():
 
79
  width = gr.Slider(
80
  label="Width",
81
  minimum=256,
82
+ maximum=2048, # Set sliders to a large size but allow flexibility in API
83
  step=32,
84
  value=1024,
85
  )
 
87
  height = gr.Slider(
88
  label="Height",
89
  minimum=256,
90
+ maximum=2048,
91
  step=32,
92
  value=1024,
93
  )
94
 
95
  with gr.Row():
 
 
96
  num_inference_steps = gr.Slider(
97
  label="Number of inference steps",
98
  minimum=1,
 
102
  )
103
 
104
  gr.Examples(
105
+ examples=examples,
106
+ fn=infer,
107
+ inputs=[prompt],
108
+ outputs=[result, seed],
109
  cache_examples="lazy"
110
  )
111
 
112
  gr.on(
113
  triggers=[run_button.click, prompt.submit],
114
+ fn=infer,
115
+ inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
116
+ outputs=[result, seed]
117
  )
118
 
119
  demo.launch()