Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,724 Bytes
1babe47 a228744 1babe47 0428173 1babe47 702d224 1babe47 702d224 1babe47 48401f8 eb694be 1babe47 c5ce443 1babe47 fac36c2 c5ce443 1babe47 a228744 1babe47 a228744 1babe47 3d994fb 1babe47 33349c1 1babe47 33349c1 1babe47 aea52f2 1babe47 a228744 1babe47 33349c1 1babe47 33349c1 1babe47 1d59db6 1babe47 d4b0ed5 702d224 3d994fb 1babe47 8a87979 1babe47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from __future__ import annotations
import gc
import numpy as np
from PIL import Image
import torch
from diffusers import (
ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
)
import cv2
from torchvision import transforms
CONTROLNET_MODEL_IDS = {
"Canny": "briaai/BRIA-2.2-ControlNet-Canny",
"Depth": "briaai/BRIA-2.2-ControlNet-Depth",
"Recoloring": "briaai/BRIA-2.2-ControlNet-Recoloring",
}
# def download_all_controlnet_weights() -> None:
# for model_id in CONTROLNET_MODEL_IDS.values():
# ControlNetModel.from_pretrained(model_id)
class Model:
def __init__(self, base_model_id: str = "briaai/BRIA-2.2", task_name: str = "Canny"):
self.device = torch.device("cuda:0")
self.base_model_id = ""
self.task_name = ""
self.pipe = self.load_pipe(base_model_id, task_name)
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
if (
base_model_id == self.base_model_id
and task_name == self.task_name
and hasattr(self, "pipe")
and self.pipe is not None
):
return self.pipe
model_id = CONTROLNET_MODEL_IDS[task_name]
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16).to('cuda')
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.float16,
device_map='auto',
low_cpu_mem_usage=True,
offload_state_dict=True,
).to('cuda')
pipe.scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
steps_offset=1
)
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
pipe.enable_xformers_memory_efficient_attention()
pipe.force_zeros_for_empty_prompt = False
torch.cuda.empty_cache()
gc.collect()
self.base_model_id = base_model_id
self.task_name = task_name
print(f'Loaded {base_model_id}...')
print(f'Loaded {model_id}...')
return pipe
# def set_base_model(self, base_model_id: str) -> str:
# if not base_model_id or base_model_id == self.base_model_id:
# return self.base_model_id
# del self.pipe
# torch.cuda.empty_cache()
# gc.collect()
# try:
# self.pipe = self.load_pipe(base_model_id, self.task_name)
# except Exception:
# self.pipe = self.load_pipe(self.base_model_id, self.task_name)
# return self.base_model_id
def load_controlnet_weight(self, task_name: str) -> None:
print('Entered load_controlnet_weight....')
# if task_name == self.task_name:
# return
# if self.pipe is not None and hasattr(self.pipe, "controlnet"):
# del self.pipe.controlnet
# torch.cuda.empty_cache()
# gc.collect()
# model_id = CONTROLNET_MODEL_IDS[task_name]
# controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
# print(f'Loaded {model_id}...')
# controlnet.to(self.device)
# torch.cuda.empty_cache()
# gc.collect()
# self.pipe.controlnet = controlnet
# self.task_name = task_name
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
if not prompt:
prompt = additional_prompt
else:
prompt = f"{prompt}, {additional_prompt}"
return prompt
@torch.autocast("cuda")
def run_pipe(
self,
prompt: str,
negative_prompt: str,
control_image: Image.Image,
num_images: int,
num_steps: int,
controlnet_conditioning_scale: float,
seed: int,
) -> list[Image.Image]:
generator = torch.Generator().manual_seed(seed)
return self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_images_per_prompt=num_images,
num_inference_steps=num_steps,
generator=generator,
image=control_image,
).images
def resize_image(self, image):
image = image.convert('RGB')
current_size = image.size
if current_size[0] > current_size[1]:
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
else:
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
return resized_image
def get_canny_filter(self, image):
low_threshold = 100
high_threshold = 200
if not isinstance(image, np.ndarray):
image = np.array(image)
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
@torch.inference_mode()
def process_canny(
self,
image: np.ndarray,
prompt: str,
negative_prompt: str,
# image_resolution: int,
num_steps: int,
controlnet_conditioning_scale: float,
seed: int,
) -> list[Image.Image]:
# resize input_image to 1024x1024
input_image = self.resize_image(image)
canny_image = self.get_canny_filter(input_image)
self.load_controlnet_weight("Canny")
results = self.run_pipe(
prompt=prompt, negative_prompt=negative_prompt, control_image=canny_image, num_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), seed=seed, num_images=1,
)
print(f'Image is {results[0]}')
print(prompt)
print(negative_prompt)
print(num_steps)
print(controlnet_conditioning_scale)
print(seed)
return [canny_image, results[0]]
################################################################################################################################
# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
# from diffusers.utils import load_image
# from PIL import Image
# import torch
# import numpy as np
# import cv2
# import gradio as gr
# from torchvision import transforms
# controlnet = ControlNetModel.from_pretrained(
# "briaai/BRIA-2.2-ControlNet-Canny",
# torch_dtype=torch.float16
# ).to('cuda')
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
# "briaai/BRIA-2.2",
# controlnet=controlnet,
# torch_dtype=torch.float16,
# device_map='auto',
# low_cpu_mem_usage=True,
# offload_state_dict=True,
# ).to('cuda')
# pipe.scheduler = EulerAncestralDiscreteScheduler(
# beta_start=0.00085,
# beta_end=0.012,
# beta_schedule="scaled_linear",
# num_train_timesteps=1000,
# steps_offset=1
# )
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.force_zeros_for_empty_prompt = False
# low_threshold = 100
# high_threshold = 200
# def resize_image(image):
# image = image.convert('RGB')
# current_size = image.size
# if current_size[0] > current_size[1]:
# center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
# else:
# center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
# resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
# return resized_image
# def get_canny_filter(image):
# if not isinstance(image, np.ndarray):
# image = np.array(image)
# image = cv2.Canny(image, low_threshold, high_threshold)
# image = image[:, :, None]
# image = np.concatenate([image, image, image], axis=2)
# canny_image = Image.fromarray(image)
# return canny_image
# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
# generator = torch.manual_seed(seed)
# # resize input_image to 1024x1024
# input_image = resize_image(input_image)
# canny_image = get_canny_filter(input_image)
# images = pipe(
# prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
# generator=generator,
# ).images
# return [canny_image,images[0]]
# block = gr.Blocks().queue()
# with block:
# gr.Markdown("## BRIA 2.2 ControlNet Canny")
# gr.HTML('''
# <p style="margin-bottom: 10px; font-size: 94%">
# This is a demo for ControlNet Canny that using
# <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
# Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
# </p>
# ''')
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
# prompt = gr.Textbox(label="Prompt")
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
# run_button = gr.Button(value="Run")
# with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
# block.launch(debug = True) |