Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,930 Bytes
95a9f0f 292ed4d 3638fca 95a9f0f 3638fca 95a9f0f ea8ecc0 95a9f0f ddf2e3c c62876e ea8ecc0 24f0751 63a0180 cf6c5a9 95a9f0f 3638fca 4b7b010 3638fca 95a9f0f 63a0180 3638fca 95a9f0f f817fc9 95a9f0f fb8ab9c 95a9f0f 41bd23c 95a9f0f 63a0180 0f13dc2 63a0180 efd6737 95a9f0f 6852b3e 63a0180 95a9f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
import gradio as gr
from torchvision import transforms
controlnet = ControlNetModel.from_pretrained(
"briaai/ControlNet-Canny",
torch_dtype=torch.float16
)#.to('cuda')
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"briaai/BRIA-2.0",
controlnet=controlnet,
torch_dtype=torch.float16,
device_map='auto',
# low_cpu_mem_usage=True,
# offload_state_dict=True,
)#.to('cuda')
pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
pipe.enable_xformers_memory_efficient_attention()
pipe.force_zeros_for_empty_prompt = False
low_threshold = 100
high_threshold = 200
def resize_image(image):
image = image.convert('RGB')
current_size = image.size
if current_size[0] > current_size[1]:
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
else:
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
return resized_image
def get_canny_filter(image):
if not isinstance(image, np.ndarray):
image = np.array(image)
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
generator = torch.manual_seed(seed)
# resize input_image to 1024x1024
input_image = resize_image(input_image)
canny_image = get_canny_filter(input_image)
images = pipe(
prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
).images
return [canny_image,images[0]]
block = gr.Blocks().queue()
with block:
gr.Markdown("## BRIA 2.0 ControlNet Canny")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for ControlNet Canny that using
<a href="https://huggingface.co/briaai/BRIA-2.0" target="_blank">BRIA 2.0 text-to-image model</a> as backbone.
Trained on licensed data, BRIA 2.0 provide full legal liability coverage for copyright and privacy infringement.
</p>
''')
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
run_button = gr.Button(value="Run")
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
block.launch(debug = True) |