Customer-Churn-App / utils.py
bright1's picture
Readded all files
88181da
raw
history blame
2.08 kB
import pandas as pd
import numpy as np
import pickle
# Define the name of the pickle file containing a pre-trained data preprocessing pipeline.
pipeline_pkl = "full_pipeline.pkl"
# Function to load data from a pickle file.
def load_pickle(filename):
with open(filename, 'rb') as file:
data = pickle.load(file)
return data
# Load the pre-processing pipeline from the pickle file.
preprocessor = load_pickle(pipeline_pkl)
# Function to create new columns in the training data.
def create_new_columns(train_data):
# Calculate 'Monthly Variations' column as the difference between 'TotalCharges' and the product of 'tenure' and 'MonthlyCharges'.
train_data['Monthly Variations'] = (train_data.loc[:, 'TotalCharges']) -((train_data.loc[:, 'tenure'] * train_data.loc[:, 'MonthlyCharges']))
# Define labels for 'tenure_group' based on a range of values.
labels =['{0}-{1}'.format(i, i+2) for i in range(0, 73, 3)]
# Create a 'tenure_group' column by binning 'tenure' values into the specified labels.
train_data['tenure_group'] = pd.cut(train_data['tenure'], bins=(range(0, 78, 3)), right=False, labels=labels)
# Drop the 'tenure' column from the DataFrame.
train_data.drop(columns=['tenure'], inplace=True)
return train_data
# Function to create a processed DataFrame from the processed data.
def create_processed_dataframe(processed_data, train_data):
# Select numerical columns from the training data.
train_num_cols=train_data.select_dtypes(exclude=['object', 'category']).columns
# Get feature names from the categorical encoder in the preprocessor.
cat_features = preprocessor.named_transformers_['categorical']['cat_encoder'].get_feature_names()
# Concatenate numerical and categorical feature names.
labels = np.concatenate([train_num_cols, cat_features])
# Create a DataFrame from the processed data with the specified column labels.
processed_dataframe = pd.DataFrame(processed_data.toarray(), columns=labels)
return processed_dataframe