Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from hub_utils import check_for_discussion, report_results | |
from model_utils import calculate_memory, get_model | |
from huggingface_hub.utils import HfHubHTTPError | |
from hub_model_stats_utils import get_model_type_downloads | |
# We need to store them as globals because gradio doesn't have a way for us to pass them into the button | |
MODEL = None | |
TASK_INP = None | |
def get_mem_results(model_name: str, library: str, options: list, access_token: str): | |
global MODEL | |
MODEL = get_model(model_name, library, access_token) | |
try: | |
has_discussion = check_for_discussion(model_name) | |
except HfHubHTTPError: | |
has_discussion = True | |
title = f"## Memory usage for '{model_name}'" | |
data = calculate_memory(MODEL, options) | |
return [title, gr.update(visible=True, value=pd.DataFrame(data)), gr.update(visible=not has_discussion)] | |
with gr.Blocks() as demo: | |
gr.Markdown("""<h1>Positron Model Universe Explorer</h1>""") | |
with gr.Tab("Model Size"): | |
gr.Markdown( | |
"""<h1>Model Memory Calculator</h1> | |
This tool will help you calculate how much vRAM is needed to train and perform big model inference | |
on a model hosted on the 🤗 Hugging Face Hub. The minimum recommended vRAM needed for a model | |
s denoted as the size of the "largest layer", and training of a model is roughly 4x its size (for Adam).""" | |
) | |
out_text = gr.Markdown() | |
mem_out = gr.DataFrame( | |
headers=["dtype", "Largest Layer", "Total Size", "Training using Adam"], | |
interactive=False, | |
visible=True, | |
) | |
with gr.Row(): | |
model_name_inp = gr.Textbox(label="Model Name or URL", value="TheBloke/Nous-Hermes-13B-GPTQ") | |
with gr.Row(): | |
library = gr.Radio(["auto", "transformers", "timm"], label="Library", value="auto") | |
options = gr.CheckboxGroup( | |
["float32", "float16/bfloat16", "int8", "int4"], | |
value="float32", | |
label="Model Precision", | |
) | |
access_token = gr.Textbox(label="API Token", placeholder="Optional (for gated models)") | |
with gr.Row(): | |
mem_btn = gr.Button("Calculate Memory Usage") | |
post_to_hub = gr.Button( | |
value="Report results in this model repo's discussions!\n(Will open in a new tab)", visible=False | |
) | |
mem_btn.click( | |
get_mem_results, | |
inputs=[model_name_inp, library, options, access_token], | |
outputs=[out_text, mem_out, post_to_hub], | |
) | |
with gr.Tab("Model Type"): | |
gr.Markdown( | |
"""<h1>Models by Model Task</h1>""" | |
) | |
with gr.Row(): | |
task_inp = gr.Dropdown(choices = ["text-generation", "question-answering", "text-classification", "unconditional-image-generation"], | |
value="text-generation", interactive=True, filterable=True, label="Model Task", show_label=True | |
) | |
stat_inp = gr.Radio(choices = ["downloads", "likes"], value = "downloads", label = "Sorting By", show_label=True, interactive = True) | |
with gr.Row(): | |
stats_btn = gr.Button("Pull Stats from HF API") | |
stats_btn.click( | |
get_model_type_downloads, | |
inputs=[task_inp], | |
outputs=[stats_out] | |
) | |
stats_out = gr.Dataframe(row_count=10) | |
# gr.Dataframe(get_model_type_likes(), row_count=10) | |
demo.launch(share=True) | |