File size: 1,263 Bytes
06aba51
7e2ad98
 
 
06aba51
7e2ad98
280610d
7e2ad98
a8807eb
7e2ad98
f640edc
7e2ad98
 
280610d
f640edc
5b52d90
280610d
7e2ad98
3f5bf4e
 
 
7e2ad98
 
 
 
 
a8807eb
 
7e2ad98
 
 
 
 
 
 
 
9eb0431
 
44f3fe3
 
 
7e2ad98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
import librosa
import numpy as np
import torch

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan

checkpoint = "burraco135/speecht5_finetuned_voxpopuli_it"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

def predict(text, speaker):

    speaker_embedding = np.load("speaker_0_embeddings.npy")
    
    inputs = processor(text=text, return_tensors="pt")

    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)

gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    examples=[
        ["Questo è un esempio di frase"],
        ["Finché la barca va, lasciala andare"],
        ["Con affetto e simpatia, buongiorno pescheria"]
    ]
).launch()