diff-bir / worker_runpod.py
camenduru's picture
Update worker_runpod.py
35488cc verified
import os, shutil, json, requests, random, runpod
import torch
from accelerate.utils import set_seed
from utils.inference import V1InferenceLoop, BSRInferenceLoop, BFRInferenceLoop, UnAlignedBFRInferenceLoop, BIDInferenceLoop
class Args:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
args = Args(
task=None,
upscale=None,
version="v2",
steps=50,
better_start=False,
tiled=False,
tile_size=512,
tile_stride=256,
pos_prompt="",
neg_prompt="low quality, blurry, low-resolution, noisy, unsharp, weird textures",
cfg_scale=4.0,
input=None,
n_samples=1,
guidance=False,
g_loss="w_mse",
g_scale=0.0,
g_start=1001,
g_stop=-1,
g_space="latent",
g_repeat=1,
output=None,
seed=231,
device="cuda"
)
def download_file(url, save_dir, file_name):
os.makedirs(save_dir, exist_ok=True)
original_file_name = url.split('/')[-1]
_, original_file_extension = os.path.splitext(original_file_name)
file_path = os.path.join(save_dir, file_name + original_file_extension)
response = requests.get(url)
response.raise_for_status()
with open(file_path, 'wb') as file:
file.write(response.content)
return file_path
@torch.inference_mode()
def generate(input):
values = input["input"]
input_image = values['input_image_check']
input_image = download_file(url=input_image, save_dir='/content/input', file_name='diffbir_tost')
args.input=input_image
args.task=values['task']
args.upscale=values['upscale']
args.version=values['version']
args.steps=values['steps']
args.better_start=values['better_start']
args.tiled=values['tiled']
args.tile_size=values['tile_size']
args.tile_stride=values['tile_stride']
args.pos_prompt=values['pos_prompt']
args.neg_prompt=values['neg_prompt']
args.cfg_scale=values['cfg_scale']
args.guidance=values['guidance']
args.g_loss=values['g_loss']
args.g_scale=values['g_scale']
args.g_space=values['g_space']
args.seed=values['seed']
args.output='/content/result'
set_seed(args.seed)
if args.version == "v1":
V1InferenceLoop(args).run()
else:
supported_tasks = {
"sr": BSRInferenceLoop,
"dn": BIDInferenceLoop,
"fr": BFRInferenceLoop,
"fr_bg": UnAlignedBFRInferenceLoop
}
supported_tasks[args.task](args).run()
if args.task == "fr_bg":
result = "/content/result/diffbir_tost_0.png"
else:
result = "/content/result/diffbir_tost.png"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists('/content/input'):
shutil.rmtree('/content/input')
if os.path.exists('/content/result'):
shutil.rmtree('/content/result')
runpod.serverless.start({"handler": generate})