cdleong's picture
Show body
59e7fd5 verified
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import pandas as pd
import numpy as np
from pose_format import Pose
from pose_format.pose_visualizer import PoseVisualizer
from pathlib import Path
from pyzstd import decompress
from PIL import Image
import cv2
import mediapipe as mp
import torch
mp_holistic = mp.solutions.holistic
FACEMESH_CONTOURS_POINTS = [
str(p)
for p in sorted(
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup])
)
]
def pose_normalization_info(pose_header):
if pose_header.components[0].name == "POSE_LANDMARKS":
return pose_header.normalization_info(
p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"),
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"),
)
if pose_header.components[0].name == "BODY_135":
return pose_header.normalization_info(
p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder")
)
if pose_header.components[0].name == "pose_keypoints_2d":
return pose_header.normalization_info(
p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder")
)
def pose_hide_legs(pose):
if pose.header.components[0].name == "POSE_LANDMARKS":
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"]
# pylint: disable=protected-access
points = [
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n)
for n in point_names
for side in ["LEFT", "RIGHT"]
]
pose.body.confidence[:, :, points] = 0
pose.body.data[:, :, points, :] = 0
return pose
else:
raise ValueError("Unknown pose header schema for hiding legs")
def preprocess_pose(pose):
pose = pose.get_components(
[
"POSE_LANDMARKS",
"FACE_LANDMARKS",
"LEFT_HAND_LANDMARKS",
"RIGHT_HAND_LANDMARKS",
],
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS},
)
pose = pose.normalize(pose_normalization_info(pose.header))
pose = pose_hide_legs(pose)
# from sign_vq.data.normalize import pre_process_mediapipe, normalize_mean_std
# from pose_anonymization.appearance import remove_appearance
# pose = remove_appearance(pose)
# pose = pre_process_mediapipe(pose)
# pose = normalize_mean_std(pose)
feat = np.nan_to_num(pose.body.data)
feat = feat.reshape(feat.shape[0], -1)
pose_frames = torch.from_numpy(np.expand_dims(feat, axis=0)).float()
return pose_frames
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)})
def load_pose(uploaded_file: UploadedFile) -> Pose:
# with input_path.open("rb") as f_in:
if uploaded_file.name.endswith(".zst"):
return Pose.read(decompress(uploaded_file.read()))
else:
return Pose.read(uploaded_file.read())
@st.cache_data(hash_funcs={Pose: lambda p: np.array(p.body.data)})
def get_pose_frames(pose: Pose, transparency: bool = False):
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
if transparency:
cv_code = v.cv2.COLOR_BGR2RGBA
else:
cv_code = v.cv2.COLOR_BGR2RGB
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]
return frames, images
def get_pose_gif(pose: Pose, step: int = 1, fps: int = None):
if fps is not None:
pose.body.fps = fps
v = PoseVisualizer(pose)
frames = [frame_data for frame_data in v.draw()]
frames = frames[::step]
return v.save_gif(None, frames=frames)
st.write("# Pose-format explorer")
st.write(
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)"
)
st.write(
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named."
)
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"])
if uploaded_file is not None:
with st.spinner(f"Loading {uploaded_file.name}"):
pose = load_pose(uploaded_file)
frames, images = get_pose_frames(pose=pose)
st.success("done loading!")
# st.write(f"pose shape: {pose.body.data.shape}")
header = pose.header
st.write("### File Info")
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"):
st.write(header)
with st.expander(f"Show body information from {uploaded_file.name}"):
st.write(pose.body)
# st.write(pose.body.data.shape)
# st.write(pose.body.fps)
st.write(f"### Selection")
components = pose.header.components
component_names = [component.name for component in components]
chosen_component_names = component_names
component_selection = st.radio(
"How to select components?", options=["manual", "signclip"]
)
if component_selection == "manual":
st.write(f"### Component selection: ")
chosen_component_names = st.pills(
"Components to visualize",
options=component_names,
selection_mode="multi",
default=component_names,
)
# st.write(chosen_component_names)
st.write("### Point selection:")
point_names = []
new_chosen_components = []
points_dict = {}
for component in pose.header.components:
with st.expander(f"points for {component.name}"):
if component.name in chosen_component_names:
st.write(f"#### {component.name}")
selected_points = st.multiselect(
f"points for component {component.name}:",
options=component.points,
default=component.points,
)
if selected_points == component.points:
st.write(
f"All selected, no need to add a points dict entry for {component.name}"
)
else:
st.write(f"Adding dictionary for {component.name}")
points_dict[component.name] = selected_points
# selected_points = st.multiselect("points to visualize", options=point_names, default=point_names)
if chosen_component_names:
if not points_dict:
points_dict = None
# else:
# st.write(points_dict)
# st.write(chosen_component_names)
pose = pose.get_components(chosen_component_names, points=points_dict)
# st.write(pose.header)
elif component_selection == "signclip":
st.write("Selected landmarks used for SignCLIP. (Face countours only)")
pose = pose.get_components(
[
"POSE_LANDMARKS",
"FACE_LANDMARKS",
"LEFT_HAND_LANDMARKS",
"RIGHT_HAND_LANDMARKS",
],
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS},
)
# pose = pose.normalize(pose_normalization_info(pose.header)) Visualization goes blank
pose = pose_hide_legs(pose)
with st.expander("Show facemesh contour points:"):
st.write(f"{FACEMESH_CONTOURS_POINTS}")
with st.expander(f"Show header:"):
st.write(pose.header)
# st.write(f"signclip selected, new header:")
# st.write(pose.body.data.shape)
# st.write(pose.header)
else:
pass
st.write(f"### Visualization")
width = st.select_slider(
"select width of images",
list(range(1, pose.header.dimensions.width + 1)),
value=pose.header.dimensions.width / 2,
)
step = st.select_slider(
"Step value to select every nth image", list(range(1, len(frames))), value=1
)
fps = st.slider(
"fps for visualization: ",
min_value=1.0,
max_value=pose.body.fps,
value=pose.body.fps,
)
visualize_clicked = st.button(f"Visualize!")
if visualize_clicked:
st.write(f"Generating gif...")
# st.write(pose.body.data.shape)
st.image(get_pose_gif(pose=pose, step=step, fps=fps))
with st.expander("See header"):
st.write(f"### header after filtering:")
st.write(pose.header)
# st.write(pose.body.data.shape)
# st.write(visualize_pose(pose=pose)) # bunch of ndarrays
# st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames])
# for i, image in enumerate(images[::n]):
# print(f"i={i}")
# st.image(image=image, width=width)