Spaces:
Running
Running
import streamlit as st | |
from streamlit.runtime.uploaded_file_manager import UploadedFile | |
import pandas as pd | |
import numpy as np | |
from pose_format import Pose | |
from pose_format.pose_visualizer import PoseVisualizer | |
from pathlib import Path | |
from pyzstd import decompress | |
from PIL import Image | |
import cv2 | |
import mediapipe as mp | |
import torch | |
mp_holistic = mp.solutions.holistic | |
FACEMESH_CONTOURS_POINTS = [ | |
str(p) | |
for p in sorted( | |
set([p for p_tup in list(mp_holistic.FACEMESH_CONTOURS) for p in p_tup]) | |
) | |
] | |
def pose_normalization_info(pose_header): | |
if pose_header.components[0].name == "POSE_LANDMARKS": | |
return pose_header.normalization_info( | |
p1=("POSE_LANDMARKS", "RIGHT_SHOULDER"), | |
p2=("POSE_LANDMARKS", "LEFT_SHOULDER"), | |
) | |
if pose_header.components[0].name == "BODY_135": | |
return pose_header.normalization_info( | |
p1=("BODY_135", "RShoulder"), p2=("BODY_135", "LShoulder") | |
) | |
if pose_header.components[0].name == "pose_keypoints_2d": | |
return pose_header.normalization_info( | |
p1=("pose_keypoints_2d", "RShoulder"), p2=("pose_keypoints_2d", "LShoulder") | |
) | |
def pose_hide_legs(pose): | |
if pose.header.components[0].name == "POSE_LANDMARKS": | |
point_names = ["KNEE", "ANKLE", "HEEL", "FOOT_INDEX"] | |
# pylint: disable=protected-access | |
points = [ | |
pose.header._get_point_index("POSE_LANDMARKS", side + "_" + n) | |
for n in point_names | |
for side in ["LEFT", "RIGHT"] | |
] | |
pose.body.confidence[:, :, points] = 0 | |
pose.body.data[:, :, points, :] = 0 | |
return pose | |
else: | |
raise ValueError("Unknown pose header schema for hiding legs") | |
def preprocess_pose(pose): | |
pose = pose.get_components( | |
[ | |
"POSE_LANDMARKS", | |
"FACE_LANDMARKS", | |
"LEFT_HAND_LANDMARKS", | |
"RIGHT_HAND_LANDMARKS", | |
], | |
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}, | |
) | |
pose = pose.normalize(pose_normalization_info(pose.header)) | |
pose = pose_hide_legs(pose) | |
# from sign_vq.data.normalize import pre_process_mediapipe, normalize_mean_std | |
# from pose_anonymization.appearance import remove_appearance | |
# pose = remove_appearance(pose) | |
# pose = pre_process_mediapipe(pose) | |
# pose = normalize_mean_std(pose) | |
feat = np.nan_to_num(pose.body.data) | |
feat = feat.reshape(feat.shape[0], -1) | |
pose_frames = torch.from_numpy(np.expand_dims(feat, axis=0)).float() | |
return pose_frames | |
# @st.cache_data(hash_funcs={UploadedFile: lambda p: str(p.name)}) | |
def load_pose(uploaded_file: UploadedFile) -> Pose: | |
# with input_path.open("rb") as f_in: | |
if uploaded_file.name.endswith(".zst"): | |
return Pose.read(decompress(uploaded_file.read())) | |
else: | |
return Pose.read(uploaded_file.read()) | |
def get_pose_frames(pose: Pose, transparency: bool = False): | |
v = PoseVisualizer(pose) | |
frames = [frame_data for frame_data in v.draw()] | |
if transparency: | |
cv_code = v.cv2.COLOR_BGR2RGBA | |
else: | |
cv_code = v.cv2.COLOR_BGR2RGB | |
images = [Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames] | |
return frames, images | |
def get_pose_gif(pose: Pose, step: int = 1, fps: int = None): | |
if fps is not None: | |
pose.body.fps = fps | |
v = PoseVisualizer(pose) | |
frames = [frame_data for frame_data in v.draw()] | |
frames = frames[::step] | |
return v.save_gif(None, frames=frames) | |
st.write("# Pose-format explorer") | |
st.write( | |
"`pose-format` is a toolkit/library for 'handling, manipulation, and visualization of poses'. See [The documentation](https://pose-format.readthedocs.io/en/latest/)" | |
) | |
st.write( | |
"I made this app to help me visualize and understand the format, including different 'components' and 'points', and what they are named." | |
) | |
uploaded_file = st.file_uploader("Upload a .pose file", type=[".pose", ".pose.zst"]) | |
if uploaded_file is not None: | |
with st.spinner(f"Loading {uploaded_file.name}"): | |
pose = load_pose(uploaded_file) | |
frames, images = get_pose_frames(pose=pose) | |
st.success("done loading!") | |
# st.write(f"pose shape: {pose.body.data.shape}") | |
header = pose.header | |
st.write("### File Info") | |
with st.expander(f"Show full Pose-format header from {uploaded_file.name}"): | |
st.write(header) | |
with st.expander(f"Show body information from {uploaded_file.name}"): | |
st.write(pose.body) | |
# st.write(pose.body.data.shape) | |
# st.write(pose.body.fps) | |
st.write(f"### Selection") | |
components = pose.header.components | |
component_names = [component.name for component in components] | |
chosen_component_names = component_names | |
component_selection = st.radio( | |
"How to select components?", options=["manual", "signclip"] | |
) | |
if component_selection == "manual": | |
st.write(f"### Component selection: ") | |
chosen_component_names = st.pills( | |
"Components to visualize", | |
options=component_names, | |
selection_mode="multi", | |
default=component_names, | |
) | |
# st.write(chosen_component_names) | |
st.write("### Point selection:") | |
point_names = [] | |
new_chosen_components = [] | |
points_dict = {} | |
for component in pose.header.components: | |
with st.expander(f"points for {component.name}"): | |
if component.name in chosen_component_names: | |
st.write(f"#### {component.name}") | |
selected_points = st.multiselect( | |
f"points for component {component.name}:", | |
options=component.points, | |
default=component.points, | |
) | |
if selected_points == component.points: | |
st.write( | |
f"All selected, no need to add a points dict entry for {component.name}" | |
) | |
else: | |
st.write(f"Adding dictionary for {component.name}") | |
points_dict[component.name] = selected_points | |
# selected_points = st.multiselect("points to visualize", options=point_names, default=point_names) | |
if chosen_component_names: | |
if not points_dict: | |
points_dict = None | |
# else: | |
# st.write(points_dict) | |
# st.write(chosen_component_names) | |
pose = pose.get_components(chosen_component_names, points=points_dict) | |
# st.write(pose.header) | |
elif component_selection == "signclip": | |
st.write("Selected landmarks used for SignCLIP. (Face countours only)") | |
pose = pose.get_components( | |
[ | |
"POSE_LANDMARKS", | |
"FACE_LANDMARKS", | |
"LEFT_HAND_LANDMARKS", | |
"RIGHT_HAND_LANDMARKS", | |
], | |
{"FACE_LANDMARKS": FACEMESH_CONTOURS_POINTS}, | |
) | |
# pose = pose.normalize(pose_normalization_info(pose.header)) Visualization goes blank | |
pose = pose_hide_legs(pose) | |
with st.expander("Show facemesh contour points:"): | |
st.write(f"{FACEMESH_CONTOURS_POINTS}") | |
with st.expander(f"Show header:"): | |
st.write(pose.header) | |
# st.write(f"signclip selected, new header:") | |
# st.write(pose.body.data.shape) | |
# st.write(pose.header) | |
else: | |
pass | |
st.write(f"### Visualization") | |
width = st.select_slider( | |
"select width of images", | |
list(range(1, pose.header.dimensions.width + 1)), | |
value=pose.header.dimensions.width / 2, | |
) | |
step = st.select_slider( | |
"Step value to select every nth image", list(range(1, len(frames))), value=1 | |
) | |
fps = st.slider( | |
"fps for visualization: ", | |
min_value=1.0, | |
max_value=pose.body.fps, | |
value=pose.body.fps, | |
) | |
visualize_clicked = st.button(f"Visualize!") | |
if visualize_clicked: | |
st.write(f"Generating gif...") | |
# st.write(pose.body.data.shape) | |
st.image(get_pose_gif(pose=pose, step=step, fps=fps)) | |
with st.expander("See header"): | |
st.write(f"### header after filtering:") | |
st.write(pose.header) | |
# st.write(pose.body.data.shape) | |
# st.write(visualize_pose(pose=pose)) # bunch of ndarrays | |
# st.write([Image.fromarray(v.cv2.cvtColor(frame, cv_code)) for frame in frames]) | |
# for i, image in enumerate(images[::n]): | |
# print(f"i={i}") | |
# st.image(image=image, width=width) | |