Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,18 @@
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import json
|
3 |
-
import math
|
4 |
import torch
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
from torch.utils.data import DataLoader
|
8 |
-
from scipy.io.wavfile import write
|
9 |
import numpy as np
|
10 |
-
|
11 |
-
import gradio as gr
|
12 |
-
import IPython.display as ipd
|
13 |
-
|
14 |
-
import commons
|
15 |
-
import utils
|
16 |
-
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
17 |
from models import SynthesizerTrn
|
18 |
from text.symbols import symbols
|
19 |
from text import text_to_sequence
|
20 |
-
|
21 |
|
22 |
def get_text(text, hps):
|
23 |
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
@@ -26,7 +21,6 @@ def get_text(text, hps):
|
|
26 |
text_norm = torch.LongTensor(text_norm)
|
27 |
return text_norm
|
28 |
|
29 |
-
|
30 |
def get_text_byroma(text, hps):
|
31 |
text_norm = []
|
32 |
for i in text:
|
@@ -36,26 +30,22 @@ def get_text_byroma(text, hps):
|
|
36 |
text_norm = torch.LongTensor(text_norm)
|
37 |
return text_norm
|
38 |
|
39 |
-
|
40 |
hps = utils.get_hparams_from_file("./configs/leo.json")
|
41 |
net_g = SynthesizerTrn(
|
42 |
len(symbols),
|
43 |
hps.data.filter_length // 2 + 1,
|
44 |
hps.train.segment_size // hps.data.hop_length,
|
45 |
n_speakers=hps.data.n_speakers,
|
46 |
-
**hps.model
|
47 |
-
)
|
48 |
_ = net_g.eval()
|
49 |
-
|
50 |
_ = utils.load_checkpoint("logs/leo/G_4000.pth", net_g, None)
|
51 |
|
52 |
# 随机抽取情感参考音频的根目录
|
53 |
random_emotion_root = "wavs"
|
54 |
emotion_dict = json.load(open("configs/leo.json", "r"))
|
55 |
|
56 |
-
|
57 |
def tts(txt, emotion, roma=False, length_scale=1):
|
58 |
-
"""emotion
|
59 |
if roma:
|
60 |
stn_tst = get_text_byroma(txt, hps)
|
61 |
else:
|
@@ -82,21 +72,22 @@ def tts(txt, emotion, roma=False, length_scale=1):
|
|
82 |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.2, emo=emo)[0][0,0].data.float().numpy()
|
83 |
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))
|
84 |
|
85 |
-
|
86 |
-
def
|
87 |
-
tts(
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
inputs
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
)
|
101 |
-
|
102 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
+
import random
|
4 |
+
import IPython.display as ipd
|
5 |
+
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
%matplotlib inline
|
8 |
+
|
9 |
import json
|
|
|
10 |
import torch
|
|
|
|
|
|
|
|
|
11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from models import SynthesizerTrn
|
13 |
from text.symbols import symbols
|
14 |
from text import text_to_sequence
|
15 |
+
from scipy.io.wavfile import write
|
16 |
|
17 |
def get_text(text, hps):
|
18 |
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
|
|
21 |
text_norm = torch.LongTensor(text_norm)
|
22 |
return text_norm
|
23 |
|
|
|
24 |
def get_text_byroma(text, hps):
|
25 |
text_norm = []
|
26 |
for i in text:
|
|
|
30 |
text_norm = torch.LongTensor(text_norm)
|
31 |
return text_norm
|
32 |
|
|
|
33 |
hps = utils.get_hparams_from_file("./configs/leo.json")
|
34 |
net_g = SynthesizerTrn(
|
35 |
len(symbols),
|
36 |
hps.data.filter_length // 2 + 1,
|
37 |
hps.train.segment_size // hps.data.hop_length,
|
38 |
n_speakers=hps.data.n_speakers,
|
39 |
+
**hps.model)
|
|
|
40 |
_ = net_g.eval()
|
|
|
41 |
_ = utils.load_checkpoint("logs/leo/G_4000.pth", net_g, None)
|
42 |
|
43 |
# 随机抽取情感参考音频的根目录
|
44 |
random_emotion_root = "wavs"
|
45 |
emotion_dict = json.load(open("configs/leo.json", "r"))
|
46 |
|
|
|
47 |
def tts(txt, emotion, roma=False, length_scale=1):
|
48 |
+
"""emotion为参考情感音频路径或random_sample(随机抽取)"""
|
49 |
if roma:
|
50 |
stn_tst = get_text_byroma(txt, hps)
|
51 |
else:
|
|
|
72 |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.2, emo=emo)[0][0,0].data.float().numpy()
|
73 |
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))
|
74 |
|
75 |
+
# 定义GUI界面的输入和输出
|
76 |
+
def generate_audio(txt, emotion):
|
77 |
+
tts(txt, emotion)
|
78 |
+
return "Audio Generated"
|
79 |
+
|
80 |
+
inputs = [
|
81 |
+
gr.inputs.Textbox(lines=2, label="Text Input"),
|
82 |
+
gr.inputs.Radio(["random_sample", "wavs/vo_bm_main2_07_20_0048.wav"], label="Emotion Reference"),
|
83 |
+
]
|
84 |
+
|
85 |
+
# 创建GUI界面
|
86 |
+
title = "Emotion TTS"
|
87 |
+
description = "Enter the text and select the emotion reference to generate synthesized speech."
|
88 |
+
outputs = gr.outputs.Textbox(label="Audio Output")
|
89 |
+
examples = [["Hello, how are you?", "random_sample"]]
|
90 |
+
gr_interface = gr.Interface(fn=generate_audio, inputs=inputs, outputs=outputs, title=title, description=description, examples=examples)
|
91 |
+
|
92 |
+
# 运行GUI界面
|
93 |
+
gr_interface.launch()
|