Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import copy | |
import numpy as np | |
import math | |
from tqdm.auto import tqdm | |
from utils.ssim import SSIM | |
from models.svc.transformer.conformer import Conformer, BaseModule | |
from models.svc.diffusion.diffusion_wrapper import DiffusionWrapper | |
class Consistency(nn.Module): | |
def __init__(self, cfg, distill=False): | |
super().__init__() | |
self.cfg = cfg | |
self.denoise_fn = DiffusionWrapper(self.cfg) | |
self.cfg = cfg.model.comosvc | |
self.teacher = not distill | |
self.P_mean = self.cfg.P_mean | |
self.P_std = self.cfg.P_std | |
self.sigma_data = self.cfg.sigma_data | |
self.sigma_min = self.cfg.sigma_min | |
self.sigma_max = self.cfg.sigma_max | |
self.rho = self.cfg.rho | |
self.N = self.cfg.n_timesteps | |
self.ssim_loss = SSIM() | |
# Time step discretization | |
step_indices = torch.arange(self.N) | |
# karras boundaries formula | |
t_steps = ( | |
self.sigma_min ** (1 / self.rho) | |
+ step_indices | |
/ (self.N - 1) | |
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho)) | |
) ** self.rho | |
self.t_steps = torch.cat( | |
[torch.zeros_like(t_steps[:1]), self.round_sigma(t_steps)] | |
) | |
def init_consistency_training(self): | |
self.denoise_fn_ema = copy.deepcopy(self.denoise_fn) | |
self.denoise_fn_pretrained = copy.deepcopy(self.denoise_fn) | |
def EDMPrecond(self, x, sigma, cond, denoise_fn): | |
""" | |
karras diffusion reverse process | |
Args: | |
x: noisy mel-spectrogram [B x n_mel x L] | |
sigma: noise level [B x 1 x 1] | |
cond: output of conformer encoder [B x n_mel x L] | |
denoise_fn: denoiser neural network e.g. DilatedCNN | |
Returns: | |
denoised mel-spectrogram [B x n_mel x L] | |
""" | |
sigma = sigma.reshape(-1, 1, 1) | |
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) | |
c_out = ( | |
(sigma - self.sigma_min) | |
* self.sigma_data | |
/ (sigma**2 + self.sigma_data**2).sqrt() | |
) | |
c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt() | |
c_noise = sigma.log() / 4 | |
x_in = c_in * x | |
x_in = x_in.transpose(1, 2) | |
x = x.transpose(1, 2) | |
cond = cond.transpose(1, 2) | |
c_noise = c_noise.squeeze() | |
if c_noise.dim() == 0: | |
c_noise = c_noise.unsqueeze(0) | |
F_x = denoise_fn(x_in, c_noise, cond) | |
D_x = c_skip * x + c_out * (F_x) | |
D_x = D_x.transpose(1, 2) | |
return D_x | |
def EDMLoss(self, x_start, cond, mask): | |
""" | |
compute loss for EDM model | |
Args: | |
x_start: ground truth mel-spectrogram [B x n_mel x L] | |
cond: output of conformer encoder [B x n_mel x L] | |
mask: mask of padded frames [B x n_mel x L] | |
""" | |
rnd_normal = torch.randn([x_start.shape[0], 1, 1], device=x_start.device) | |
sigma = (rnd_normal * self.P_std + self.P_mean).exp() | |
weight = (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2 | |
# follow Grad-TTS, start from Gaussian noise with mean cond and std I | |
noise = (torch.randn_like(x_start) + cond) * sigma | |
D_yn = self.EDMPrecond(x_start + noise, sigma, cond, self.denoise_fn) | |
loss = weight * ((D_yn - x_start) ** 2) | |
loss = torch.sum(loss * mask) / torch.sum(mask) | |
return loss | |
def round_sigma(self, sigma): | |
return torch.as_tensor(sigma) | |
def edm_sampler( | |
self, | |
latents, | |
cond, | |
nonpadding, | |
num_steps=50, | |
sigma_min=0.002, | |
sigma_max=80, | |
rho=7, | |
S_churn=0, | |
S_min=0, | |
S_max=float("inf"), | |
S_noise=1, | |
): | |
""" | |
karras diffusion sampler | |
Args: | |
latents: noisy mel-spectrogram [B x n_mel x L] | |
cond: output of conformer encoder [B x n_mel x L] | |
nonpadding: mask of padded frames [B x n_mel x L] | |
num_steps: number of steps for diffusion inference | |
Returns: | |
denoised mel-spectrogram [B x n_mel x L] | |
""" | |
# Time step discretization. | |
num_steps = num_steps + 1 | |
step_indices = torch.arange(num_steps, device=latents.device) | |
t_steps = ( | |
sigma_max ** (1 / rho) | |
+ step_indices | |
/ (num_steps - 1) | |
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) | |
) ** rho | |
t_steps = torch.cat([self.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) | |
# Main sampling loop. | |
x_next = latents * t_steps[0] | |
# wrap in tqdm for progress bar | |
bar = tqdm(enumerate(zip(t_steps[:-1], t_steps[1:]))) | |
for i, (t_cur, t_next) in bar: | |
x_cur = x_next | |
# Increase noise temporarily. | |
gamma = ( | |
min(S_churn / num_steps, np.sqrt(2) - 1) | |
if S_min <= t_cur <= S_max | |
else 0 | |
) | |
t_hat = self.round_sigma(t_cur + gamma * t_cur) | |
t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device) | |
t[:, 0, 0] = t_hat | |
t_hat = t | |
x_hat = x_cur + ( | |
t_hat**2 - t_cur**2 | |
).sqrt() * S_noise * torch.randn_like(x_cur) | |
# Euler step. | |
denoised = self.EDMPrecond(x_hat, t_hat, cond, self.denoise_fn) | |
d_cur = (x_hat - denoised) / t_hat | |
x_next = x_hat + (t_next - t_hat) * d_cur | |
# add Heun’s 2nd order method | |
# if i < num_steps - 1: | |
# t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device) | |
# t[:, 0, 0] = t_next | |
# #t_next = t | |
# denoised = self.EDMPrecond(x_next, t, cond, self.denoise_fn, nonpadding) | |
# d_prime = (x_next - denoised) / t_next | |
# x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime) | |
return x_next | |
def CTLoss_D(self, y, cond, mask): | |
""" | |
compute loss for consistency distillation | |
Args: | |
y: ground truth mel-spectrogram [B x n_mel x L] | |
cond: output of conformer encoder [B x n_mel x L] | |
mask: mask of padded frames [B x n_mel x L] | |
""" | |
with torch.no_grad(): | |
mu = 0.95 | |
for p, ema_p in zip( | |
self.denoise_fn.parameters(), self.denoise_fn_ema.parameters() | |
): | |
ema_p.mul_(mu).add_(p, alpha=1 - mu) | |
n = torch.randint(1, self.N, (y.shape[0],)) | |
z = torch.randn_like(y) + cond | |
tn_1 = self.t_steps[n + 1].reshape(-1, 1, 1).to(y.device) | |
f_theta = self.EDMPrecond(y + tn_1 * z, tn_1, cond, self.denoise_fn) | |
with torch.no_grad(): | |
tn = self.t_steps[n].reshape(-1, 1, 1).to(y.device) | |
# euler step | |
x_hat = y + tn_1 * z | |
denoised = self.EDMPrecond(x_hat, tn_1, cond, self.denoise_fn_pretrained) | |
d_cur = (x_hat - denoised) / tn_1 | |
y_tn = x_hat + (tn - tn_1) * d_cur | |
# Heun’s 2nd order method | |
denoised2 = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_pretrained) | |
d_prime = (y_tn - denoised2) / tn | |
y_tn = x_hat + (tn - tn_1) * (0.5 * d_cur + 0.5 * d_prime) | |
f_theta_ema = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_ema) | |
loss = (f_theta - f_theta_ema.detach()) ** 2 | |
loss = torch.sum(loss * mask) / torch.sum(mask) | |
# check nan | |
if torch.any(torch.isnan(loss)): | |
print("nan loss") | |
if torch.any(torch.isnan(f_theta)): | |
print("nan f_theta") | |
if torch.any(torch.isnan(f_theta_ema)): | |
print("nan f_theta_ema") | |
return loss | |
def get_t_steps(self, N): | |
N = N + 1 | |
step_indices = torch.arange(N) | |
t_steps = ( | |
self.sigma_min ** (1 / self.rho) | |
+ step_indices | |
/ (N - 1) | |
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho)) | |
) ** self.rho | |
return t_steps.flip(0) | |
def CT_sampler(self, latents, cond, nonpadding, t_steps=1): | |
""" | |
consistency distillation sampler | |
Args: | |
latents: noisy mel-spectrogram [B x n_mel x L] | |
cond: output of conformer encoder [B x n_mel x L] | |
nonpadding: mask of padded frames [B x n_mel x L] | |
t_steps: number of steps for diffusion inference | |
Returns: | |
denoised mel-spectrogram [B x n_mel x L] | |
""" | |
# one-step | |
if t_steps == 1: | |
t_steps = [80] | |
# multi-step | |
else: | |
t_steps = self.get_t_steps(t_steps) | |
t_steps = torch.as_tensor(t_steps).to(latents.device) | |
latents = latents * t_steps[0] | |
_t = torch.zeros((latents.shape[0], 1, 1), device=latents.device) | |
_t[:, 0, 0] = t_steps[0] | |
x = self.EDMPrecond(latents, _t, cond, self.denoise_fn_ema) | |
for t in t_steps[1:-1]: | |
z = torch.randn_like(x) + cond | |
x_tn = x + (t**2 - self.sigma_min**2).sqrt() * z | |
_t = torch.zeros((x.shape[0], 1, 1), device=x.device) | |
_t[:, 0, 0] = t | |
t = _t | |
x = self.EDMPrecond(x_tn, t, cond, self.denoise_fn_ema) | |
return x | |
def forward(self, x, nonpadding, cond, t_steps=1, infer=False): | |
""" | |
calculate loss or sample mel-spectrogram | |
Args: | |
x: | |
training: ground truth mel-spectrogram [B x n_mel x L] | |
inference: output of encoder [B x n_mel x L] | |
""" | |
if self.teacher: # teacher model -- karras diffusion | |
if not infer: | |
loss = self.EDMLoss(x, cond, nonpadding) | |
return loss | |
else: | |
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2]) | |
x = torch.randn(shape, device=x.device) + cond | |
x = self.edm_sampler(x, cond, nonpadding, t_steps) | |
return x | |
else: # Consistency distillation | |
if not infer: | |
loss = self.CTLoss_D(x, cond, nonpadding) | |
return loss | |
else: | |
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2]) | |
x = torch.randn(shape, device=x.device) + cond | |
x = self.CT_sampler(x, cond, nonpadding, t_steps=1) | |
return x | |
class ComoSVC(BaseModule): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.cfg.model.comosvc.n_mel = self.cfg.preprocess.n_mel | |
self.distill = self.cfg.model.comosvc.distill | |
self.encoder = Conformer(self.cfg.model.comosvc) | |
self.decoder = Consistency(self.cfg, distill=self.distill) | |
self.ssim_loss = SSIM() | |
def forward(self, x_mask, x, n_timesteps, temperature=1.0): | |
""" | |
Generates mel-spectrogram from pitch, content vector, energy. Returns: | |
1. encoder outputs (from conformer) | |
2. decoder outputs (from diffusion-based decoder) | |
Args: | |
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel] | |
x : output of encoder framework. [B x L x d_condition] | |
n_timesteps : number of steps to use for reverse diffusion in decoder. | |
temperature : controls variance of terminal distribution. | |
""" | |
# Get encoder_outputs `mu_x` | |
mu_x = self.encoder(x, x_mask) | |
encoder_outputs = mu_x | |
mu_x = mu_x.transpose(1, 2) | |
x_mask = x_mask.transpose(1, 2) | |
# Generate sample by performing reverse dynamics | |
decoder_outputs = self.decoder( | |
mu_x, x_mask, mu_x, t_steps=n_timesteps, infer=True | |
) | |
decoder_outputs = decoder_outputs.transpose(1, 2) | |
return encoder_outputs, decoder_outputs | |
def compute_loss(self, x_mask, x, mel, skip_diff=False): | |
""" | |
Computes 2 losses: | |
1. prior loss: loss between mel-spectrogram and encoder outputs. (l2 and ssim loss) | |
2. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder. | |
Args: | |
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel] | |
x : output of encoder framework. [B x L x d_condition] | |
mel : ground truth mel-spectrogram. [B x L x n_mel] | |
""" | |
mu_x = self.encoder(x, x_mask) | |
# prior loss | |
x_mask = x_mask.repeat(1, 1, mel.shape[-1]) | |
prior_loss = torch.sum( | |
0.5 * ((mel - mu_x) ** 2 + math.log(2 * math.pi)) * x_mask | |
) | |
prior_loss = prior_loss / (torch.sum(x_mask) * self.cfg.model.comosvc.n_mel) | |
# ssim loss | |
ssim_loss = self.ssim_loss(mu_x, mel) | |
ssim_loss = torch.sum(ssim_loss * x_mask) / torch.sum(x_mask) | |
x_mask = x_mask.transpose(1, 2) | |
mu_x = mu_x.transpose(1, 2) | |
mel = mel.transpose(1, 2) | |
if not self.distill and skip_diff: | |
diff_loss = prior_loss.clone() | |
diff_loss.fill_(0) | |
# Cut a small segment of mel-spectrogram in order to increase batch size | |
else: | |
mu_y = mu_x | |
mask_y = x_mask | |
diff_loss = self.decoder(mel, mask_y, mu_y, infer=False) | |
return ssim_loss, prior_loss, diff_loss | |