Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import copy
import numpy as np
import math
from tqdm.auto import tqdm
from utils.ssim import SSIM
from models.svc.transformer.conformer import Conformer, BaseModule
from models.svc.diffusion.diffusion_wrapper import DiffusionWrapper
class Consistency(nn.Module):
def __init__(self, cfg, distill=False):
super().__init__()
self.cfg = cfg
self.denoise_fn = DiffusionWrapper(self.cfg)
self.cfg = cfg.model.comosvc
self.teacher = not distill
self.P_mean = self.cfg.P_mean
self.P_std = self.cfg.P_std
self.sigma_data = self.cfg.sigma_data
self.sigma_min = self.cfg.sigma_min
self.sigma_max = self.cfg.sigma_max
self.rho = self.cfg.rho
self.N = self.cfg.n_timesteps
self.ssim_loss = SSIM()
# Time step discretization
step_indices = torch.arange(self.N)
# karras boundaries formula
t_steps = (
self.sigma_min ** (1 / self.rho)
+ step_indices
/ (self.N - 1)
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho))
) ** self.rho
self.t_steps = torch.cat(
[torch.zeros_like(t_steps[:1]), self.round_sigma(t_steps)]
)
def init_consistency_training(self):
self.denoise_fn_ema = copy.deepcopy(self.denoise_fn)
self.denoise_fn_pretrained = copy.deepcopy(self.denoise_fn)
def EDMPrecond(self, x, sigma, cond, denoise_fn):
"""
karras diffusion reverse process
Args:
x: noisy mel-spectrogram [B x n_mel x L]
sigma: noise level [B x 1 x 1]
cond: output of conformer encoder [B x n_mel x L]
denoise_fn: denoiser neural network e.g. DilatedCNN
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
sigma = sigma.reshape(-1, 1, 1)
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
c_out = (
(sigma - self.sigma_min)
* self.sigma_data
/ (sigma**2 + self.sigma_data**2).sqrt()
)
c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt()
c_noise = sigma.log() / 4
x_in = c_in * x
x_in = x_in.transpose(1, 2)
x = x.transpose(1, 2)
cond = cond.transpose(1, 2)
c_noise = c_noise.squeeze()
if c_noise.dim() == 0:
c_noise = c_noise.unsqueeze(0)
F_x = denoise_fn(x_in, c_noise, cond)
D_x = c_skip * x + c_out * (F_x)
D_x = D_x.transpose(1, 2)
return D_x
def EDMLoss(self, x_start, cond, mask):
"""
compute loss for EDM model
Args:
x_start: ground truth mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
mask: mask of padded frames [B x n_mel x L]
"""
rnd_normal = torch.randn([x_start.shape[0], 1, 1], device=x_start.device)
sigma = (rnd_normal * self.P_std + self.P_mean).exp()
weight = (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2
# follow Grad-TTS, start from Gaussian noise with mean cond and std I
noise = (torch.randn_like(x_start) + cond) * sigma
D_yn = self.EDMPrecond(x_start + noise, sigma, cond, self.denoise_fn)
loss = weight * ((D_yn - x_start) ** 2)
loss = torch.sum(loss * mask) / torch.sum(mask)
return loss
def round_sigma(self, sigma):
return torch.as_tensor(sigma)
def edm_sampler(
self,
latents,
cond,
nonpadding,
num_steps=50,
sigma_min=0.002,
sigma_max=80,
rho=7,
S_churn=0,
S_min=0,
S_max=float("inf"),
S_noise=1,
):
"""
karras diffusion sampler
Args:
latents: noisy mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
nonpadding: mask of padded frames [B x n_mel x L]
num_steps: number of steps for diffusion inference
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
# Time step discretization.
num_steps = num_steps + 1
step_indices = torch.arange(num_steps, device=latents.device)
t_steps = (
sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
) ** rho
t_steps = torch.cat([self.round_sigma(t_steps), torch.zeros_like(t_steps[:1])])
# Main sampling loop.
x_next = latents * t_steps[0]
# wrap in tqdm for progress bar
bar = tqdm(enumerate(zip(t_steps[:-1], t_steps[1:])))
for i, (t_cur, t_next) in bar:
x_cur = x_next
# Increase noise temporarily.
gamma = (
min(S_churn / num_steps, np.sqrt(2) - 1)
if S_min <= t_cur <= S_max
else 0
)
t_hat = self.round_sigma(t_cur + gamma * t_cur)
t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device)
t[:, 0, 0] = t_hat
t_hat = t
x_hat = x_cur + (
t_hat**2 - t_cur**2
).sqrt() * S_noise * torch.randn_like(x_cur)
# Euler step.
denoised = self.EDMPrecond(x_hat, t_hat, cond, self.denoise_fn)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# add Heun’s 2nd order method
# if i < num_steps - 1:
# t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device)
# t[:, 0, 0] = t_next
# #t_next = t
# denoised = self.EDMPrecond(x_next, t, cond, self.denoise_fn, nonpadding)
# d_prime = (x_next - denoised) / t_next
# x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
return x_next
def CTLoss_D(self, y, cond, mask):
"""
compute loss for consistency distillation
Args:
y: ground truth mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
mask: mask of padded frames [B x n_mel x L]
"""
with torch.no_grad():
mu = 0.95
for p, ema_p in zip(
self.denoise_fn.parameters(), self.denoise_fn_ema.parameters()
):
ema_p.mul_(mu).add_(p, alpha=1 - mu)
n = torch.randint(1, self.N, (y.shape[0],))
z = torch.randn_like(y) + cond
tn_1 = self.t_steps[n + 1].reshape(-1, 1, 1).to(y.device)
f_theta = self.EDMPrecond(y + tn_1 * z, tn_1, cond, self.denoise_fn)
with torch.no_grad():
tn = self.t_steps[n].reshape(-1, 1, 1).to(y.device)
# euler step
x_hat = y + tn_1 * z
denoised = self.EDMPrecond(x_hat, tn_1, cond, self.denoise_fn_pretrained)
d_cur = (x_hat - denoised) / tn_1
y_tn = x_hat + (tn - tn_1) * d_cur
# Heun’s 2nd order method
denoised2 = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_pretrained)
d_prime = (y_tn - denoised2) / tn
y_tn = x_hat + (tn - tn_1) * (0.5 * d_cur + 0.5 * d_prime)
f_theta_ema = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_ema)
loss = (f_theta - f_theta_ema.detach()) ** 2
loss = torch.sum(loss * mask) / torch.sum(mask)
# check nan
if torch.any(torch.isnan(loss)):
print("nan loss")
if torch.any(torch.isnan(f_theta)):
print("nan f_theta")
if torch.any(torch.isnan(f_theta_ema)):
print("nan f_theta_ema")
return loss
def get_t_steps(self, N):
N = N + 1
step_indices = torch.arange(N)
t_steps = (
self.sigma_min ** (1 / self.rho)
+ step_indices
/ (N - 1)
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho))
) ** self.rho
return t_steps.flip(0)
def CT_sampler(self, latents, cond, nonpadding, t_steps=1):
"""
consistency distillation sampler
Args:
latents: noisy mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
nonpadding: mask of padded frames [B x n_mel x L]
t_steps: number of steps for diffusion inference
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
# one-step
if t_steps == 1:
t_steps = [80]
# multi-step
else:
t_steps = self.get_t_steps(t_steps)
t_steps = torch.as_tensor(t_steps).to(latents.device)
latents = latents * t_steps[0]
_t = torch.zeros((latents.shape[0], 1, 1), device=latents.device)
_t[:, 0, 0] = t_steps[0]
x = self.EDMPrecond(latents, _t, cond, self.denoise_fn_ema)
for t in t_steps[1:-1]:
z = torch.randn_like(x) + cond
x_tn = x + (t**2 - self.sigma_min**2).sqrt() * z
_t = torch.zeros((x.shape[0], 1, 1), device=x.device)
_t[:, 0, 0] = t
t = _t
x = self.EDMPrecond(x_tn, t, cond, self.denoise_fn_ema)
return x
def forward(self, x, nonpadding, cond, t_steps=1, infer=False):
"""
calculate loss or sample mel-spectrogram
Args:
x:
training: ground truth mel-spectrogram [B x n_mel x L]
inference: output of encoder [B x n_mel x L]
"""
if self.teacher: # teacher model -- karras diffusion
if not infer:
loss = self.EDMLoss(x, cond, nonpadding)
return loss
else:
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2])
x = torch.randn(shape, device=x.device) + cond
x = self.edm_sampler(x, cond, nonpadding, t_steps)
return x
else: # Consistency distillation
if not infer:
loss = self.CTLoss_D(x, cond, nonpadding)
return loss
else:
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2])
x = torch.randn(shape, device=x.device) + cond
x = self.CT_sampler(x, cond, nonpadding, t_steps=1)
return x
class ComoSVC(BaseModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.cfg.model.comosvc.n_mel = self.cfg.preprocess.n_mel
self.distill = self.cfg.model.comosvc.distill
self.encoder = Conformer(self.cfg.model.comosvc)
self.decoder = Consistency(self.cfg, distill=self.distill)
self.ssim_loss = SSIM()
@torch.no_grad()
def forward(self, x_mask, x, n_timesteps, temperature=1.0):
"""
Generates mel-spectrogram from pitch, content vector, energy. Returns:
1. encoder outputs (from conformer)
2. decoder outputs (from diffusion-based decoder)
Args:
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel]
x : output of encoder framework. [B x L x d_condition]
n_timesteps : number of steps to use for reverse diffusion in decoder.
temperature : controls variance of terminal distribution.
"""
# Get encoder_outputs `mu_x`
mu_x = self.encoder(x, x_mask)
encoder_outputs = mu_x
mu_x = mu_x.transpose(1, 2)
x_mask = x_mask.transpose(1, 2)
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder(
mu_x, x_mask, mu_x, t_steps=n_timesteps, infer=True
)
decoder_outputs = decoder_outputs.transpose(1, 2)
return encoder_outputs, decoder_outputs
def compute_loss(self, x_mask, x, mel, skip_diff=False):
"""
Computes 2 losses:
1. prior loss: loss between mel-spectrogram and encoder outputs. (l2 and ssim loss)
2. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel]
x : output of encoder framework. [B x L x d_condition]
mel : ground truth mel-spectrogram. [B x L x n_mel]
"""
mu_x = self.encoder(x, x_mask)
# prior loss
x_mask = x_mask.repeat(1, 1, mel.shape[-1])
prior_loss = torch.sum(
0.5 * ((mel - mu_x) ** 2 + math.log(2 * math.pi)) * x_mask
)
prior_loss = prior_loss / (torch.sum(x_mask) * self.cfg.model.comosvc.n_mel)
# ssim loss
ssim_loss = self.ssim_loss(mu_x, mel)
ssim_loss = torch.sum(ssim_loss * x_mask) / torch.sum(x_mask)
x_mask = x_mask.transpose(1, 2)
mu_x = mu_x.transpose(1, 2)
mel = mel.transpose(1, 2)
if not self.distill and skip_diff:
diff_loss = prior_loss.clone()
diff_loss.fill_(0)
# Cut a small segment of mel-spectrogram in order to increase batch size
else:
mu_y = mu_x
mask_y = x_mask
diff_loss = self.decoder(mel, mask_y, mu_y, infer=False)
return ssim_loss, prior_loss, diff_loss