Spaces:
Paused
Paused
""" | |
Adapted from salesforce@LAVIS and Vision-CAIR@MiniGPT-4. Below is the original copyright: | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import argparse | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import video_llama.tasks as tasks | |
from video_llama.common.config import Config | |
from video_llama.common.dist_utils import get_rank, init_distributed_mode | |
from video_llama.common.logger import setup_logger | |
from video_llama.common.optims import ( | |
LinearWarmupCosineLRScheduler, | |
LinearWarmupStepLRScheduler, | |
) | |
from video_llama.common.registry import registry | |
from video_llama.common.utils import now | |
# imports modules for registration | |
from video_llama.datasets.builders import * | |
from video_llama.models import * | |
from video_llama.processors import * | |
from video_llama.runners import * | |
from video_llama.tasks import * | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Training") | |
parser.add_argument("--cfg-path", required=True, help="path to configuration file.") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
# if 'LOCAL_RANK' not in os.environ: | |
# os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
def get_runner_class(cfg): | |
""" | |
Get runner class from config. Default to epoch-based runner. | |
""" | |
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) | |
return runner_cls | |
def main(): | |
# allow auto-dl completes on main process without timeout when using NCCL backend. | |
# os.environ["NCCL_BLOCKING_WAIT"] = "1" | |
# set before init_distributed_mode() to ensure the same job_id shared across all ranks. | |
job_id = now() | |
cfg = Config(parse_args()) | |
init_distributed_mode(cfg.run_cfg) | |
setup_seeds(cfg) | |
# set after init_distributed_mode() to only log on master. | |
setup_logger() | |
cfg.pretty_print() | |
task = tasks.setup_task(cfg) | |
datasets = task.build_datasets(cfg) | |
# datasets['webvid']['train'][0] | |
# datasets | |
model = task.build_model(cfg) | |
runner = get_runner_class(cfg)( | |
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets | |
) | |
runner.train() | |
if __name__ == "__main__": | |
main() | |