Spaces:
Runtime error
Runtime error
import os | |
import random | |
import json | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from pycocotools import mask | |
from transformers import CLIPImageProcessor | |
from VisualSearch.model.llava import conversation as conversation_lib | |
from transformers import OwlViTProcessor | |
from VisualSearch.utils.utils import box_xyxy_to_cxcywh, expand2square | |
from VisualSearch.utils.utils import ANSWER_LIST, SHORT_QUESTION_LIST | |
class MixedGroundingDataset(torch.utils.data.Dataset): | |
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
img_size = 1024 | |
ignore_label = 255 | |
def __init__( | |
self, | |
base_dir, | |
tokenizer, | |
vision_tower, | |
samples_per_epoch=500 * 8 * 2 * 10, | |
precision: str = "fp32", | |
num_classes_per_sample: int = 3, | |
exclude_val=False, | |
): | |
self.samples_per_epoch = samples_per_epoch | |
self.num_classes_per_sample = num_classes_per_sample | |
self.base_dir = base_dir | |
self.tokenizer = tokenizer | |
self.precision = precision | |
self.transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16") | |
self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower) | |
self.short_question_list = SHORT_QUESTION_LIST | |
self.answer_list = ANSWER_LIST | |
with open(os.path.join(base_dir, 'MixedGrounding', 'goldG_train.json')) as f: | |
self.images = json.load(f) | |
def __len__(self): | |
return self.samples_per_epoch | |
def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
# Normalize colors | |
x = (x - self.pixel_mean) / self.pixel_std | |
# Pad | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
def __getitem__(self, idx): | |
idx = random.randint(0, len(self.images) - 1) | |
image_info = self.images[idx] | |
image_data_source = image_info['data_source'] | |
file_name = image_info["file_name"] | |
assert image_data_source in ['coco', 'vg', 'flickr'] | |
if image_data_source == 'coco': | |
image_path = os.path.join(self.base_dir, 'coco2014/train2014', file_name) | |
elif image_data_source == 'vg': | |
image_path = os.path.join(self.base_dir, 'MixedGrounding/GQA/images', file_name) | |
else: | |
image_path = os.path.join(self.base_dir, 'MixedGrounding/flickr30k-images', file_name) | |
caption = image_info['caption'] | |
instances = image_info['instances'] | |
if len(instances) == 0: | |
return self.__getitem__(0) | |
if len(instances) >= self.num_classes_per_sample: | |
sampled_inds = np.random.choice( | |
list(range(len(instances))), size=self.num_classes_per_sample, replace=False | |
) | |
else: | |
sampled_inds = list(range(len(instances))) | |
sampled_classes = sampled_inds | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# preprocess image for clip | |
image_clip = self.clip_image_processor.preprocess( | |
expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt")["pixel_values"][0] | |
original_size = image.shape[:2] | |
image = self.transform(images=image, return_tensors="pt")['pixel_values'][0] | |
resize = image.shape[:2] | |
questions = [] | |
answers = [] | |
bboxes_labels = [] | |
for sample_ind in sampled_inds: | |
text = [] | |
tokens_positive = instances[sample_ind]['tokens_positive'] | |
for token in tokens_positive: | |
text.append(caption[token[0]:token[1]]) | |
text = " ".join(text) | |
text = text.strip() | |
question_template = random.choice(self.short_question_list) | |
questions.append(question_template.format(class_name=text.lower())) | |
answers.append(random.choice(self.answer_list)) | |
cur_bboxes = [instances[sample_ind]['bbox']] | |
cur_bboxes = torch.tensor(cur_bboxes).view(-1, 4) | |
# xywh to x1y1x2y2 | |
cur_bboxes[:, 2:] += cur_bboxes[:, :2] | |
cur_bboxes[:, 0::2].clamp_(min=0, max=original_size[1]) | |
cur_bboxes[:, 1::2].clamp_(min=0, max=original_size[0]) | |
keep = (cur_bboxes[:, 3] > cur_bboxes[:, 1]) & (cur_bboxes[:, 2] > cur_bboxes[:, 0]) | |
cur_bboxes = cur_bboxes[keep] | |
cur_bboxes = box_xyxy_to_cxcywh(cur_bboxes) | |
cur_bboxes = cur_bboxes / torch.tensor([original_size[1], original_size[0], original_size[1], original_size[0]], dtype=torch.float32) | |
if len(cur_bboxes) == 0: | |
return self.__getitem__(0) | |
bboxes_labels.append(cur_bboxes) | |
conversations = [] | |
conv = conversation_lib.default_conversation.copy() | |
i = 0 | |
while i < len(questions): | |
conv.messages = [] | |
conv.append_message(conv.roles[0], questions[i]) | |
conv.append_message(conv.roles[1], answers[i]) | |
conversations.append(conv.get_prompt()) | |
i += 1 | |
bboxes_valid = [1]*len(bboxes_labels) | |
masks_valid = [0]*len(bboxes_labels) | |
masks = torch.rand(len(bboxes_labels), *original_size) | |
label = torch.ones(original_size) * self.ignore_label | |
return ( | |
image_path, | |
image, | |
image_clip, | |
conversations, | |
masks, | |
label, | |
bboxes_labels, | |
bboxes_valid, | |
masks_valid, | |
resize, | |
questions, | |
sampled_classes, | |
) | |