Spaces:
Runtime error
Runtime error
""" from https://github.com/keithito/tacotron """ | |
''' | |
Cleaners are transformations that run over the input text at both training and eval time. | |
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
1. "english_cleaners" for English text | |
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
the symbols in symbols.py to match your data). | |
''' | |
import re | |
from unidecode import unidecode | |
import pyopenjtalk | |
from janome.tokenizer import Tokenizer | |
# Regular expression matching whitespace: | |
_whitespace_re = re.compile(r'\s+') | |
# List of (regular expression, replacement) pairs for abbreviations: | |
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ | |
('mrs', 'misess'), | |
('mr', 'mister'), | |
('dr', 'doctor'), | |
('st', 'saint'), | |
('co', 'company'), | |
('jr', 'junior'), | |
('maj', 'major'), | |
('gen', 'general'), | |
('drs', 'doctors'), | |
('rev', 'reverend'), | |
('lt', 'lieutenant'), | |
('hon', 'honorable'), | |
('sgt', 'sergeant'), | |
('capt', 'captain'), | |
('esq', 'esquire'), | |
('ltd', 'limited'), | |
('col', 'colonel'), | |
('ft', 'fort'), | |
]] | |
# Regular expression matching Japanese without punctuation marks: | |
_japanese_characters = re.compile(r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') | |
# Regular expression matching non-Japanese characters or punctuation marks: | |
_japanese_marks = re.compile(r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') | |
# Tokenizer for Japanese | |
tokenizer = Tokenizer() | |
def expand_abbreviations(text): | |
for regex, replacement in _abbreviations: | |
text = re.sub(regex, replacement, text) | |
return text | |
def lowercase(text): | |
return text.lower() | |
def collapse_whitespace(text): | |
return re.sub(_whitespace_re, ' ', text) | |
def convert_to_ascii(text): | |
return unidecode(text) | |
def basic_cleaners(text): | |
'''Basic pipeline that lowercases and collapses whitespace without transliteration.''' | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def transliteration_cleaners(text): | |
'''Pipeline for non-English text that transliterates to ASCII.''' | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def japanese_cleaners(text): | |
'''Pipeline for Japanese text.''' | |
sentences = re.split(_japanese_marks, text) | |
marks = re.findall(_japanese_marks, text) | |
text = '' | |
for i, mark in enumerate(marks): | |
if re.match(_japanese_characters, sentences[i]): | |
text += pyopenjtalk.g2p(sentences[i], kana=False).replace('pau','').replace(' ','') | |
text += unidecode(mark).replace(' ','') | |
if re.match(_japanese_characters, sentences[-1]): | |
text += pyopenjtalk.g2p(sentences[-1], kana=False).replace('pau','').replace(' ','') | |
if re.match('[A-Za-z]',text[-1]): | |
text += '.' | |
return text | |
def japanese_tokenization_cleaners(text): | |
'''Pipeline for tokenizing Japanese text.''' | |
words = [] | |
for token in tokenizer.tokenize(text): | |
if token.phonetic!='*': | |
words.append(token.phonetic) | |
else: | |
words.append(token.surface) | |
text = '' | |
for word in words: | |
if re.match(_japanese_characters, word): | |
if word[0] == '\u30fc': | |
continue | |
if len(text)>0: | |
text += ' ' | |
text += pyopenjtalk.g2p(word, kana=False).replace(' ','') | |
else: | |
text += unidecode(word).replace(' ','') | |
if re.match('[A-Za-z]',text[-1]): | |
text += '.' | |
return text | |
def japanese_accent_cleaners(text): | |
'''Pipeline for notating accent in Japanese text.''' | |
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html''' | |
sentences = re.split(_japanese_marks, text) | |
marks = re.findall(_japanese_marks, text) | |
text = '' | |
for i, sentence in enumerate(sentences): | |
if re.match(_japanese_characters, sentence): | |
text += ':' | |
labels = pyopenjtalk.extract_fullcontext(sentence) | |
for n, label in enumerate(labels): | |
phoneme = re.search(r'\-([^\+]*)\+', label).group(1) | |
if phoneme not in ['sil','pau']: | |
text += phoneme | |
else: | |
continue | |
n_moras = int(re.search(r'/F:(\d+)_', label).group(1)) | |
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1)) | |
a2 = int(re.search(r"\+(\d+)\+", label).group(1)) | |
a3 = int(re.search(r"\+(\d+)/", label).group(1)) | |
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil','pau']: | |
a2_next=-1 | |
else: | |
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) | |
# Accent phrase boundary | |
if a3 == 1 and a2_next == 1: | |
text += ' ' | |
# Falling | |
elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras: | |
text += ')' | |
# Rising | |
elif a2 == 1 and a2_next == 2: | |
text += '(' | |
if i<len(marks): | |
text += unidecode(marks[i]).replace(' ','') | |
if re.match('[A-Za-z]',text[-1]): | |
text += '.' | |
return text | |
def japanese_phrase_cleaners(text): | |
'''Pipeline for dividing Japanese text into phrases.''' | |
sentences = re.split(_japanese_marks, text) | |
marks = re.findall(_japanese_marks, text) | |
text = '' | |
for i, sentence in enumerate(sentences): | |
if re.match(_japanese_characters, sentence): | |
if text != '': | |
text += ' ' | |
labels = pyopenjtalk.extract_fullcontext(sentence) | |
for n, label in enumerate(labels): | |
phoneme = re.search(r'\-([^\+]*)\+', label).group(1) | |
if phoneme not in ['sil','pau']: | |
text += phoneme | |
else: | |
continue | |
a3 = int(re.search(r"\+(\d+)/", label).group(1)) | |
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil','pau']: | |
a2_next=-1 | |
else: | |
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) | |
# Accent phrase boundary | |
if a3 == 1 and a2_next == 1: | |
text += ' ' | |
if i<len(marks): | |
text += unidecode(marks[i]).replace(' ','') | |
if re.match('[A-Za-z]',text[-1]): | |
text += '.' | |
return text | |