Seq2Seq / app.py
czl's picture
add demo
0a56b6f verified
raw
history blame
13.1 kB
import json
import re
import unicodedata
from typing import Tuple
import gradio as gr
import torch
import torch.nn as nn
def greet(name):
return "Hello " + name + "!!"
# read word2idx and idx2word from json file
with open('vocab/word2idx.json', 'r') as f:
word2idx = json.load(f)
with open('vocab/idx2word.json', 'r') as f:
idx2word = json.load(f)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def unicodetoascii(text):
"""
Turn a Unicode string to plain ASCII
:param text: text to be converted
:return: text in ascii format
"""
normalized_text = unicodedata.normalize('NFKD', str(text))
ascii_text = ''.join(char for char in normalized_text if unicodedata.category(char) != 'Mn')
return ascii_text
def preprocess_text(text, fn=unicodetoascii):
text = fn(text)
text = text.lower()
text = re.sub(r'http\S+', '', text)
text = re.sub(r'[^\x00-\x7F]+', "", text) # Remove non-ASCII characters
text = re.sub(r"(\w)[!?]+(\w)", r'\1\2', text) # Remove !? between words
text = re.sub(r"\s\s+", r" ", text).strip() # Remove extra spaces
return text
def tokenize(text):
"""
Tokenize text
:param text: text to be tokenized
:return: list of tokens
"""
return text.split()
def lookup_words(idx2word, indices):
"""
Lookup words from indices
:param idx2word: index to word mapping
:param indices: indices to be converted
:return: list of words
"""
return [idx2word[str(idx)] for idx in indices]
params = {'input_dim': len(word2idx),
'emb_dim': 128,
'enc_hid_dim': 256,
'dec_hid_dim': 256,
'dropout': 0.5,
'attn_dim': 32,
'teacher_forcing_ratio': 0.5,
'epochs': 35}
class Encoder(nn.Module):
"""
GRU RNN Encoder
"""
def __init__(self,
input_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: float = 0):
super(Encoder, self).__init__()
# dimension of imput
self.input_dim = input_dim
# dimension of embedding layer
self.emb_dim = emb_dim
# dimension of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimension of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
# create embedding layer use to train embedding representations of the corpus
self.embedding = nn.Embedding(input_dim, emb_dim)
# use GRU for RNN
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional=True, batch_first=False, num_layers=1)
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
# create dropout layer which will help produce a more generalisable model
self.dropout = nn.Dropout(dropout)
def forward(self, src: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# apply dropout to the embedding layer
embedded = self.dropout(self.embedding(src))
# generate an output and hidden layer from the rnn
outputs, hidden = self.rnn(embedded)
hidden = torch.tanh(self.fc(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)))
return outputs, hidden
class Attention(nn.Module):
"""
Luong attention
"""
def __init__(self,
enc_hid_dim: int,
dec_hid_dim: int,
attn_dim: int):
super(Attention, self).__init__()
# dimension of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimension of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
self.attn = nn.Linear(self.attn_in, attn_dim)
def forward(self,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> torch.Tensor:
src_len = encoder_outputs.shape[0]
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
# Luong attention
energy = torch.tanh(self.attn(torch.cat((repeated_decoder_hidden, encoder_outputs), dim=2)))
attention = torch.sum(energy, dim=2)
return F.softmax(attention, dim=1)
class AttnDecoder(nn.Module):
"""
GRU RNN Decoder with attention
"""
def __init__(self,
output_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
attention: nn.Module,
dropout: float = 0):
super(AttnDecoder, self).__init__()
# dimention of output layer
self.output_dim = output_dim
# dimention of embedding layer
self.emb_dim = emb_dim
# dimention of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimention of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
# drouput rate
self.dropout = dropout
# attention layer
self.attention = attention
# create embedding layer use to train embedding representations of the corpus
self.embedding = nn.Embedding(output_dim, emb_dim)
# use GRU for RNN
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def encode_attention(self,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> torch.Tensor:
a = self.attention(decoder_hidden, encoder_outputs)
a = a.unsqueeze(1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
weighted_encoder_rep = torch.bmm(a, encoder_outputs)
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
return weighted_encoder_rep
def forward(self,
input: torch.Tensor,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
input = input.unsqueeze(0)
# apply dropout to embedding layer
embedded = self.dropout(self.embedding(input))
weighted_encoder = self.encode_attention(decoder_hidden, encoder_outputs)
# generate an output and hidden layer from the rnn
rnn_input = torch.cat((embedded, weighted_encoder), dim=2)
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
embedded = embedded.squeeze(0)
output = output.squeeze(0)
weighted_encoder = weighted_encoder.squeeze(0)
output = self.out(torch.cat((output, weighted_encoder, embedded), dim=1))
return output, decoder_hidden.squeeze(0)
class Decoder(nn.Module):
"""
GRU RNN Decoder without attention
"""
def __init__(self,
output_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: float = 0):
super(Decoder, self).__init__()
# dimention of output layer
self.output_dim = output_dim
# dimention of embedding layer
self.emb_dim = emb_dim
# dimention of encoding hidden layer
self.enc_hid_dim = enc_hid_dim
# dimention of decoding hidden layer
self.dec_hid_dim = dec_hid_dim
# drouput rate
self.dropout = dropout
# create embedding layer use to train embedding representations of the corpus
self.embedding = nn.Embedding(output_dim, emb_dim)
# GRU RNN
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, batch_first=False, num_layers=1)
self.out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self,
input: torch.Tensor,
decoder_hidden: torch.Tensor,
encoder_outputs: torch.Tensor) -> Tuple[torch.Tensor
, torch.Tensor]:
input = input.unsqueeze(0)
# apply dropout to embedding layer
embedded = self.dropout(self.embedding(input))
context = encoder_outputs[-1,:,:]
context = context.repeat(embedded.shape[0], 1, 1)
embs_and_context = torch.cat((embedded, context), -1)
# generate an output and hidden layer from the rnn
output, decoder_hidden = self.rnn(embs_and_context, decoder_hidden.unsqueeze(0))
embedded = embedded.squeeze(0)
output = output.squeeze(0)
context = context.squeeze(0)
output = self.out(torch.cat((output, embedded, context), -1))
return output, decoder_hidden.squeeze(0)
class Seq2Seq(nn.Module):
"""
Seq-2-Seq model combining RNN encoder and RNN decoder
"""
def __init__(self,
encoder: nn.Module,
decoder: nn.Module,
device: torch.device):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
def forward(self,
src: torch.Tensor,
trg: torch.Tensor,
teacher_forcing_ratio: float = 0.5) -> torch.Tensor:
src = src.transpose(0, 1) # (max_len, batch_size)
trg = trg.transpose(0, 1) # (max_len, batch_size)
batch_size = src.shape[1]
max_len = trg.shape[0]
trg_vocab_size = self.decoder.output_dim
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
# first input to the decoder is the <sos> token
output = trg[0,:]
for t in range(1, max_len):
output, hidden = self.decoder(output, hidden, encoder_outputs)
outputs[t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.max(1)[1]
output = trg[t] if teacher_force else top1
return outputs
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
attn = Attention(enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attn_dim=params['attn_dim'])
dec = AttnDecoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], attention=attn, dropout=params['dropout'])
attn_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
attn_model.load_state_dict(torch.load('models/AttnSeq2Seq-188M_epoch35.pt'))
attn_model.to(device)
enc = Encoder(input_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
dec = Decoder(output_dim=params['input_dim'], emb_dim=params['emb_dim'], enc_hid_dim=params['enc_hid_dim'], dec_hid_dim=params['dec_hid_dim'], dropout=params['dropout'])
norm_model = Seq2Seq(encoder=enc, decoder=dec, device=device)
norm_model.load_state_dict(torch.load('models/NormSeq2Seq-188M_epoch35.pt'))
norm_model.to(device)
models_dict = {'AttentionSeq2Seq-188M': attn_model, 'NormalSeq2Seq-188M': norm_model}
def generate(models_str, sentence, max_len=12, word2idx=word2idx, idx2word=idx2word,
device=device, tokenize=tokenize, preprocess_text=preprocess_text,
lookup_words=lookup_words, models_dict=models_dict):
"""
Generate response
:param model: model
:param sentence: sentence
:param max_len: maximum length of sequence
:param word2idx: word to index mapping
:param idx2word: index to word mapping
:return: response
"""
model = models_dict[models_str]
model.eval()
sentence = preprocess_text(sentence)
tokens = tokenize(sentence)
tokens = [word2idx[token] if token in word2idx else word2idx['<unk>'] for token in tokens]
tokens = [word2idx['<bos>']] + tokens + [word2idx['<eos>']]
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(1).to(device)
outputs = [word2idx['<bos>']]
with torch.no_grad():
encoder_outputs, hidden = model.encoder(tokens)
for t in range(max_len):
output, hidden = model.decoder(torch.tensor([outputs[-1]], dtype=torch.long).to(device), hidden, encoder_outputs)
top1 = output.max(1)[1]
outputs.append(top1.item())
if top1.item() == word2idx['<eos>']:
break
response = lookup_words(idx2word, outputs)
return ' '.join(response).replace('<bos>', '').replace('<eos>', '').strip()
demo = gr.Interface(fn=generate,
inputs=[gr.Radio(list(models_dict.keys()), label="Model"),
gr.Textbox(lines=2, label="Input Text")],
outputs=gr.Textbox(label="Output Text"))
if __name__ == "__main__":
demo.launch()