ko-bench / app.py
davidkim205's picture
add claud-3-5 results
174062d
raw
history blame
17.3 kB
import gradio as gr
import pandas as pd
import numpy as np
import random
import plotly.graph_objects as go
from bs4 import BeautifulSoup
import plotly.express as px
file_result_score = 'ko_bench.csv'
file_full_lb = 'mt_bench_240805.csv'
def add_hf_link(row):
organization, model = row['model'].split('__')
if organization.lower() not in ['google', 'openai', 'anthropic']:
row['link'] = f"https://huggingface.co/{organization}/{model}"
if organization.lower() == 'google' and 'gemini' in model:
row['link'] = "https://ai.google.dev/gemini-api"
return row
# read csv
df_result_score = pd.read_csv(file_result_score)
df_full_lb = pd.read_csv(file_full_lb)
# dataframe
df = pd.DataFrame(df_result_score)
df['model'] = df['model'].str.split('__').str[1]
df_rs = pd.DataFrame(df_result_score)
df_rs['link'] = ''
df_rs = df_rs.apply(add_hf_link, axis=1)
df_rs['organization'] = df_rs['model'].str.split('__').str[0]
df_rs['model'] = df_rs['model'].str.split('__').str[1]
df_full_lboard = pd.DataFrame(df_full_lb)
df_full_lboard.replace('GPT-4-1106-preview', 'gpt-4-0125-preview', inplace=True) # MT-bench์˜ GPT-4-1106-preview ๋ฅผ gpt-4-0125-preview๋กœ ๋ณ€๊ฒฝ
df_rs.replace("", np.nan, inplace=True) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
def custom_mean(series):
if series.name == 'link' or series.name == 'organization':
return series.values[0]
numeric_series = pd.to_numeric(series, errors='coerce') # ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์ˆซ์ž๋กœ ๋ณ€ํ™˜
return numeric_series.mean() if not numeric_series.isna().all() else np.nan # NaN์ด ์•„๋‹Œ ๊ฐ’์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด ํ‰๊ท  ๊ณ„์‚ฐ
def get_mt_bench(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
model_lower = model.lower()
matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
if not matching_rows.empty:
return matching_rows['MT-bench (score)'].values[0]
return ''
def get_organization(row): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
model = row['model']
if pd.Series(model).str.contains('mistral-large', case=False, regex=True).any():
return 'Mistral'
elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
return 'KISTI'
model_lower = model.lower()
matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
if not matching_rows.empty:
return matching_rows['Organization'].values[0]
if row['organization'] != '' and pd.notna(row['organization']):
organization = row['organization'].lower()
if organization == 'qwen':
return 'Alibaba'
elif organization == 'google':
return 'Google'
elif organization == 'lgai-exaone':
return 'LGAI'
return row['organization']
def get_license(model): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
if pd.Series(model).str.contains('mistral-large|WizardLM-2-8x22B|ko-gemma-2', case=False, regex=True).any():
return 'Apache-2.0'
elif pd.Series(model).str.contains('koni-llama3-8b', case=False, regex=True).any():
return 'llama3'
elif pd.Series(model).str.contains('Ko-Llama-3-8B-Instruct', case=False, regex=True).any():
return 'Llama Community'
elif pd.Series(model).str.contains('claude|gemini|EXAONE-3.0-7.8B-Instruct', case=False, regex=True).any():
return 'Proprietary'
elif pd.Series(model).str.contains('qwen', case=False, regex=True).any():
if pd.Series(model).str.contains('max', case=False, regex=True).any():
return 'Proprietary'
else:
return 'Qianwen LICENSE'
model_lower = model.lower()
matching_rows = df_full_lboard[df_full_lboard['Model'].str.lower() == model_lower]
if not matching_rows.empty:
return matching_rows['License'].values[0]
return ''
def get_link(row): # ๋Œ€์†Œ๋ฌธ์ž ๋ฌด์‹œํ•˜๊ณ  ๋ชจ๋ธ์„ ๋งค์นญํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜ ์ •์˜
if row['link'] != '' and pd.notna(row['link']):
return row
model_lower = row['model'].lower()
matching_rows = df_full_lboard[df_full_lboard['key'].str.lower() == model_lower]
if not matching_rows.empty:
row['link'] = matching_rows['Link'].values[0]
return row
def add_link(row):
if pd.isna(row['link']):
row['link'] = ''
if row['link'] != '':
row['model'] = f"<a href={row['link']}>{row['model']}</a>"
return row
# dataframe_full
df_full_rs = df_rs.copy()
df_full_rs.rename(columns={'score': 'Ko-Bench'}, inplace=True)
df_full_rs = df_full_rs.drop(columns=['Coding', 'Extraction', 'Humanities', 'Math', 'Reasoning', 'Roleplay', 'STEM', 'Writing'])
df_full_rs = df_full_rs.drop(columns=['turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_full_rs = df_full_rs.groupby(['model', 'judge_model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model', 'judge_model']}).reset_index()
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)
df_full_rs['Ko-Bench/openai'] = '' # Ko-Bench/openai, Ko-Bench/keval ์—ด ์ถ”๊ฐ€
df_full_rs['Ko-Bench/keval'] = ''
for idx, j_model in df_full_rs['judge_model'].items():
if j_model == 'keval':
df_full_rs.at[idx, 'Ko-Bench/keval'] = df_full_rs.at[idx, 'Ko-Bench']
else :
df_full_rs.at[idx, 'Ko-Bench/openai'] = df_full_rs.at[idx, 'Ko-Bench']
df_full_rs = df_full_rs.drop(columns=['judge_model'])
df_full_rs = df_full_rs.groupby(['model']).agg({col: custom_mean for col in df_full_rs.columns if col not in ['model']}).reset_index() # Ko-Bench/openai, Ko-Bench/keval ํ–‰ ํ•ฉ๋ณ‘
df_full_rs = df_full_rs.round(2)
df_full_rs.replace("", np.nan, inplace=True)
df_full_rs['MT-Bench'] = '' # MT-Bench ์—ด ์ถ”๊ฐ€
df_full_rs['MT-Bench'] = df_full_rs['model'].apply(get_mt_bench)
df_full_rs['MT-Bench'] = df_full_rs['MT-Bench'].str.replace('-', '', regex=False)
df_full_rs['Organization'] = '' # Organization ์—ด ์ถ”๊ฐ€
df_full_rs['Organization'] = df_full_rs.apply(get_organization, axis=1 )
df_full_rs['License'] = '' # License ์—ด ์ถ”๊ฐ€
df_full_rs['License'] = df_full_rs['model'].apply(get_license)
df_full_rs = df_full_rs.sort_values(by='Ko-Bench', ascending=False)
df_full_rs.insert(0, 'rank', range(1, len(df_full_rs) + 1))
plot_models = df_full_rs['model'].unique() # model detail view๋ฅผ ์œ„ํ•œ models ๋ฆฌ์ŠคํŠธ
df_full_rs = df_full_rs.apply(get_link, axis=1)
df_full_rs = df_full_rs.apply(add_link, axis=1)
df_full_rs = df_full_rs.drop(columns=['Ko-Bench', 'link', 'organization'])
# dataframe
df_rs['MT-Bench'] = '' # MT-Bench ์—ด ์ถ”๊ฐ€
df_rs['MT-Bench'] = df_rs['model'].apply(get_mt_bench)
df_rs['MT-Bench'] = df_rs['MT-Bench'].str.replace('-', '', regex=False)
df_rs.replace("", np.nan, inplace=True) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
# dataframe_openai
df_openai = pd.DataFrame(df_rs)
df_openai = df_openai[df_openai['judge_model'] != 'keval']
df_openai = df_openai.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_openai = df_openai.groupby('model').agg({col: custom_mean for col in df_openai.columns if col != 'model'}).reset_index()
df_openai = df_openai.round(2)
df_openai = df_openai.apply(get_link, axis=1)
df_openai = df_openai.apply(add_link, axis=1)
df_openai = df_openai.drop(columns=['link', 'organization'])
df_openai = df_openai.sort_values(by='score', ascending=False)
df_openai.insert(0, 'rank', range(1, len(df_openai) + 1))
# dataframe_keval
df_keval = pd.DataFrame(df_rs)
df_keval = df_keval[df_keval['judge_model'] == 'keval']
df_keval = df_keval.drop(columns=['judge_model', 'turn']) # ๋ชจ๋ธ๋ณ„ turn1,2 score ํ•ฉ๋ณ‘
df_keval = df_keval.groupby('model').agg({col: custom_mean for col in df_keval.columns if col != 'model'}).reset_index()
df_keval = df_keval.round(2)
df_keval = df_keval.apply(get_link, axis=1)
df_keval = df_keval.apply(add_link, axis=1)
df_keval = df_keval.drop(columns=['link', 'organization'])
df_keval = df_keval.sort_values(by='score', ascending=False)
df_keval.insert(0, 'rank', range(1, len(df_keval) + 1))
# model detail view
plot_models_list = plot_models.tolist()
CATEGORIES = ["Writing", "Roleplay", "Reasoning", "Math", "Coding", "Extraction", "STEM", "Humanities"]
colors_openai = ['#ff0000', '#ff1493', '#115e02', '#21ad05']
colors_keval = ['#ff0000', '#ff1493', '#0000ff', '#0592eb']
random.seed(42)
def search_dataframe(query): # df ๊ฒ€์ƒ‰ ํ•จ์ˆ˜ ์ •์˜
if not query:
return df # ๊ฒ€์ƒ‰์–ด๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ „์ฒด DataFrame ๋ฐ˜ํ™˜
filtered_df = df[df.apply(lambda row: any(row.astype(str) == query), axis=1)]
return filtered_df
def radar_chart(categories, Top1_turn1, Top1_turn2, Selected_model_turn1, Selected_model_turn2, category_labels, str): # plot ๊ทธ๋ฆฌ๋Š” ํ•จ์ˆ˜
#categories = categories.split(',')
Top1_turn1 = [item for sublist in Top1_turn1 for item in sublist]
Top1_turn2 = [item for sublist in Top1_turn2 for item in sublist]
Selected_model_turn1 = [item for sublist in Selected_model_turn1 for item in sublist]
Selected_model_turn2 = [item for sublist in Selected_model_turn2 for item in sublist]
values_lists = [
list(map(float, Top1_turn1)),
list(map(float, Top1_turn2)),
list(map(float, Selected_model_turn1)),
list(map(float, Selected_model_turn2))
]
if str == "openai": colors = colors_openai
else: colors = colors_keval
if str == "openai": title_text = "< Openai >"
else: title_text = "< Keval >"
fig = go.Figure()
for i, values in enumerate(values_lists):
if len(categories) != len(values):
return f"Error in dataset {i+1}: Number of categories and values must be the same."
fig.add_trace(go.Scatterpolar(
r=values + [values[0]], # Closing the loop of the radar chart
theta=categories + [categories[0]], # Closing the loop of the radar chart
mode='lines',
name=category_labels[i], # Label for the dataset
line = dict(color= colors[i])
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(max(values) for values in values_lists)],
showline=True,
),
angularaxis=dict(
rotation=0,
direction='clockwise'
)
),
showlegend=True,
#width=650, # ์ ์ ˆํ•œ ๋„ˆ๋น„ ์„ค์ •
#height=650, # ์ ์ ˆํ•œ ๋†’์ด ์„ค์ •
margin=dict(l=1000, r=20, t=20, b=20),
#autosize = False,
paper_bgcolor='white',
plot_bgcolor='lightgrey',
title=dict(
text=title_text, # ์ œ๋ชฉ์„ ์›ํ•˜๋Š” ํ…์ŠคํŠธ๋กœ ๋ณ€๊ฒฝ
x=0.5, # ์ œ๋ชฉ์˜ x ์œ„์น˜ (0=์™ผ์ชฝ, 0.5=์ค‘์•™, 1=์˜ค๋ฅธ์ชฝ)
xanchor='center', # ์ œ๋ชฉ์˜ x ์œ„์น˜ ๊ธฐ์ค€ (center, left, right)
y=0.95, # ์ œ๋ชฉ์˜ y ์œ„์น˜ (0=ํ•˜๋‹จ, 1=์ƒ๋‹จ)
yanchor='top' # ์ œ๋ชฉ์˜ y ์œ„์น˜ ๊ธฐ์ค€ (top, middle, bottom)
)
)
return fig
def search_openai_plot(dropdown_model): # openai plot ํ•จ์ˆ˜ ์ •์˜
openai_top_model = df_openai.iat[0, df_openai.columns.get_loc('model')]
openai_top_model = BeautifulSoup(openai_top_model, 'html.parser').get_text()
condition1 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == openai_top_model)
top1_openai_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()
condition2 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == openai_top_model)
top1_openai_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()
condition3 = (df['judge_model'] != 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
openai_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()
condition4 = (df['judge_model'] != 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
openai_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()
category_labels = []
category_labels.append(openai_top_model + " /Turn 1")
category_labels.append(openai_top_model + " /Turn 2")
category_labels.append(dropdown_model + " /Turn 1")
category_labels.append(dropdown_model + " /Turn 2")
fig = radar_chart(CATEGORIES, top1_openai_turn1, top1_openai_turn2, openai_turn1, openai_turn2, category_labels,"openai")
return fig
def search_keval_plot(dropdown_model): # keval plot ํ•จ์ˆ˜ ์ •์˜
keval_top_model = df_keval.iat[0, df_keval.columns.get_loc('model')]
keval_top_model = BeautifulSoup(keval_top_model, 'html.parser').get_text()
condition1 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == keval_top_model)
top1_keval_turn1 = df.loc[condition1, 'Coding':'Writing'].values.tolist()
condition2 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == keval_top_model)
top1_keval_turn2 = df.loc[condition2, 'Coding':'Writing'].values.tolist()
condition3 = (df['judge_model'] == 'keval') & (df['turn'] == 1) & (df['model'] == dropdown_model)
keval_turn1 = df.loc[condition3, 'Coding':'Writing'].values.tolist()
condition4 = (df['judge_model'] == 'keval') & (df['turn'] == 2) & (df['model'] == dropdown_model)
keval_turn2 = df.loc[condition4, 'Coding':'Writing'].values.tolist()
category_labels = []
category_labels.append(keval_top_model + " /Turn 1")
category_labels.append(keval_top_model + " /Turn 2")
category_labels.append(dropdown_model + " /Turn 1")
category_labels.append(dropdown_model + " /Turn 2")
fig = radar_chart(CATEGORIES, top1_keval_turn1, top1_keval_turn2, keval_turn1, keval_turn2, category_labels, "keval")
return fig
# average
def plot_average():
fig = go.Figure()
colors = [px.colors.qualitative.Set2, px.colors.qualitative.Pastel2]
turn_df = df_full_rs
# gpt-4o
fig.add_trace(go.Scatter(x=turn_df['model'], y=turn_df['Ko-Bench/openai'], mode='lines+markers',
name=f'gpt-4o(Average)',
line=dict(color=colors[0][0], dash='dash'),
marker=dict(symbol='x', size=10)))
# keval
fig.add_trace(go.Scatter(x=turn_df['model'], y=turn_df['Ko-Bench/keval'], mode='lines+markers',
name=f'keval(Average)',
line=dict(color=colors[0][1]),
marker=dict(symbol='circle', size=10)))
fig.update_layout(
title=f'Comparison of OpenAI ko_bench and keval ko_bench (Average)',
xaxis_title='Model',
yaxis_title='Score',
legend_title='Metric',
hovermode='x unified',
template='plotly_white'
)
fig.update_yaxes(range=[0, 10])
fig.update_layout(legend_traceorder="reversed")
return fig
#gradio
with gr.Blocks(css='assets/leaderboard.css') as demo:
gr.Markdown("")
gr.Markdown("# ๐Ÿ† Ko-Bench Leaderboard")
gr.Markdown("")
gr.Markdown("#### The Ko-Bench is a leaderboard for evaluating the multi-level conversation ability and instruction-following ability of Korean Large Language Models (LLMs).")
gr.Markdown("- MT-Bench: a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.")
gr.Markdown("- Ko-Bench/openai: a set of challenging multi-turn questions in Korean. We use GPT-4o to grade the model responses.")
gr.Markdown("- Ko-Bench/keval: a set of challenging multi-turn questions in Korean. We use the keval model as an evaluation model.")
gr.Markdown("")
gr.Markdown("github : https://github.com/davidkim205/Ko-Bench")
gr.Markdown("keval : https://huggingface.co/collections/davidkim205/k-eval-6660063dd66e21cbdcc4fbf1")
gr.Markdown("")
with gr.Row():
with gr.TabItem("Ko-Bench"):
gr.Dataframe(value=df_full_rs,
datatype=['html' if col == 'model' else 'markdown' for col in df_full_rs.columns])
with gr.Row():
with gr.TabItem("Average"):
gr.Plot(plot_average)
with gr.TabItem("Openai Judgment"):
gr.Dataframe(value=df_openai,
datatype=['html' if col == 'model' else 'markdown' for col in df_openai.columns])
with gr.TabItem("Keval Judgment"):
gr.Dataframe(value=df_keval,
datatype=['html' if col == 'model' else 'markdown' for col in df_keval.columns])
with gr.TabItem("Model Detail View"):
with gr.Blocks():
with gr.Row():
dropdown = gr.Dropdown(choices=plot_models_list, label="Choose a Model")
with gr.Row():
dataframe = gr.Dataframe(label="Model Detail View")
dropdown.change(fn=search_dataframe, inputs=dropdown, outputs=dataframe)
with gr.Row():
plot_openai = gr.Plot(label="Openai Plot")
dropdown.change(fn=search_openai_plot, inputs=dropdown, outputs=plot_openai)
plot_keval = gr.Plot(label="Keval Plot")
dropdown.change(fn=search_keval_plot, inputs=dropdown, outputs=plot_keval)
demo.launch(share=True, server_name="0.0.0.0", debug=True)