tvar-demo-test-2 / models /pipeline.py
michellemoorre's picture
Fix ui and add apex
412b3d8
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torchvision.transforms import ToPILImage
from models.vqvae import VQVAEHF
from models.clip import FrozenCLIPEmbedder
from models.var import TVARHF, sample_with_top_k_top_p_, gumbel_softmax_with_rng
class TVARPipeline:
vae_path = "michellemoorre/vae-test"
text_encoder_path = "openai/clip-vit-large-patch14"
text_encoder_2_path = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
def __init__(self, var, vae, text_encoder, text_encoder_2, device):
self.var = var
self.vae = vae
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.var.eval()
self.vae.eval()
self.device = device
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, device="cuda"):
var = TVARHF.from_pretrained(pretrained_model_name_or_path).to(device)
vae = VQVAEHF.from_pretrained(cls.vae_path).to(device)
text_encoder = FrozenCLIPEmbedder(cls.text_encoder_path, device=device)
text_encoder_2 = FrozenCLIPEmbedder(cls.text_encoder_2_path, device=device)
return cls(var, vae, text_encoder, text_encoder_2, device)
@staticmethod
def to_image(tensor):
return [ToPILImage()(
(255 * img.cpu().detach()).to(torch.uint8))
for img in tensor]
def encode_prompt(
self,
prompt: Union[str, List[str]],
null_prompt: str = "",
encode_null: bool = True,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
encodings = [
self.text_encoder.encode(prompt),
self.text_encoder_2.encode(prompt),
]
prompt_embeds = torch.concat(
[encoding.last_hidden_state for encoding in encodings], dim=-1
)
pooled_prompt_embeds = encodings[-1].pooler_output
attn_bias = encodings[-1].attn_bias
if encode_null:
null_prompt = [null_prompt] if isinstance(null_prompt, str) else prompt
null_encodings = [
self.text_encoder.encode(null_prompt),
self.text_encoder_2.encode(null_prompt),
]
null_prompt_embeds = torch.concat(
[encoding.last_hidden_state for encoding in encodings], dim=-1
)
null_pooled_prompt_embeds = null_encodings[-1].pooler_output
null_attn_bias = null_encodings[-1].attn_bias
B, L, hidden_dim = prompt_embeds.shape
pooled_dim = pooled_prompt_embeds.shape[1]
null_prompt_embeds = null_prompt_embeds[:, :L].expand(B, L, hidden_dim).to(prompt_embeds.device)
null_pooled_prompt_embeds = null_pooled_prompt_embeds.expand(B, pooled_dim).to(pooled_prompt_embeds.device)
null_attn_bias = null_attn_bias[:, :L].expand(B, L).to(attn_bias.device)
prompt_embeds = torch.cat([prompt_embeds, null_prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, null_pooled_prompt_embeds], dim=0)
attn_bias = torch.cat([attn_bias, null_attn_bias], dim=0)
return prompt_embeds, pooled_prompt_embeds, attn_bias
@torch.inference_mode()
def __call__(
self,
prompt = None,
null_prompt = "",
g_seed: Optional[int] = None,
cfg=4.0,
top_k=450,
top_p=0.95,
more_smooth=False,
re=False,
re_max_depth=10,
re_start_iter=2,
return_pil=True,
encoded_prompt = None,
encoded_null_prompt = None,
) -> torch.Tensor: # returns reconstructed image (B, 3, H, W) in [0, 1]
"""
only used for inference, on autoregressive mode
:param B: batch size
:param label_B: imagenet label; if None, randomly sampled
:param g_seed: random seed
:param cfg: classifier-free guidance ratio
:param top_k: top-k sampling
:param top_p: top-p sampling
:param more_smooth: smoothing the pred using gumbel softmax; only used in visualization, not used in FID/IS benchmarking
:return: if returns_vemb: list of embedding h_BChw := vae_embed(idx_Bl), else: list of idx_Bl
"""
assert not self.var.training
var = self.var
vae = self.vae
vae_quant = self.vae.quantize
if g_seed is None:
rng = None
else:
var.rng.manual_seed(g_seed)
rng = var.rng
if encoded_prompt is not None:
assert encoded_null_prompt is not None
context, cond_vector, context_attn_bias = self.var.parse_batch(
encoded_prompt,
encoded_null_prompt,
)
else:
context, cond_vector, context_attn_bias = self.encode_prompt(prompt, null_prompt)
B = context.shape[0] // 2
cond_vector = var.text_pooler(cond_vector)
sos = cond_BD = cond_vector
lvl_pos = var.lvl_embed(var.lvl_1L)
if not var.rope:
lvl_pos += var.pos_1LC
next_token_map = (
sos.unsqueeze(1)
+ var.pos_start.expand(2 * B, var.first_l, -1)
+ lvl_pos[:, : var.first_l]
)
cur_L = 0
f_hat = sos.new_zeros(B, var.Cvae, var.patch_nums[-1], var.patch_nums[-1])
for b in var.blocks:
b.attn.kv_caching(True)
b.cross_attn.kv_caching(True)
for si, pn in enumerate(var.patch_nums): # si: i-th segment
ratio = si / var.num_stages_minus_1
cond_BD_or_gss = var.shared_ada_lin(cond_BD)
x_BLC = next_token_map
if var.rope:
freqs_cis = var.freqs_cis[:, cur_L : cur_L + pn * pn]
else:
freqs_cis = var.freqs_cis
for block in var.blocks:
x_BLC = block(
x=x_BLC,
cond_BD=cond_BD_or_gss,
attn_bias=None,
context=context,
context_attn_bias=context_attn_bias,
freqs_cis=freqs_cis,
)
cur_L += pn * pn
logits_BlV = var.get_logits(x_BLC, cond_BD)
t = cfg * ratio
logits_BlV = (1 + t) * logits_BlV[:B] - t * logits_BlV[B:]
idx_Bl = sample_with_top_k_top_p_(
logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1
)[:, :, 0]
if re and si >= re_start_iter:
selected_logits = torch.gather(logits_BlV, -1, idx_Bl.unsqueeze(-1))[:, :, 0]
mx = selected_logits.sum(dim=-1)[:, None]
for _ in range(re_max_depth):
new_idx_Bl = sample_with_top_k_top_p_(
logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1
)[:, :, 0]
selected_logits = torch.gather(logits_BlV, -1, new_idx_Bl.unsqueeze(-1))[:, :, 0]
new_mx = selected_logits.sum(dim=-1)[:, None]
idx_Bl = idx_Bl * (mx >= new_mx) + new_idx_Bl * (mx < new_mx)
mx = mx * (mx >= new_mx) + new_mx * (mx < new_mx)
if not more_smooth: # this is the default case
h_BChw = vae_quant.embedding(idx_Bl) # B, l, Cvae
else: # not used when evaluating FID/IS/Precision/Recall
gum_t = max(0.27 * (1 - ratio * 0.95), 0.005) # refer to mask-git
h_BChw = gumbel_softmax_with_rng(
logits_BlV.mul(1 + ratio), tau=gum_t, hard=False, dim=-1, rng=rng
) @ vae_quant.embedding.weight.unsqueeze(0)
h_BChw = h_BChw.transpose_(1, 2).reshape(B, var.Cvae, pn, pn)
f_hat, next_token_map = vae_quant.get_next_autoregressive_input(
si, len(var.patch_nums), f_hat, h_BChw
)
if si != var.num_stages_minus_1: # prepare for next stage
next_token_map = next_token_map.view(B, var.Cvae, -1).transpose(1, 2)
next_token_map = (
var.word_embed(next_token_map)
+ lvl_pos[:, cur_L : cur_L + var.patch_nums[si + 1] ** 2]
)
next_token_map = next_token_map.repeat(
2, 1, 1
) # double the batch sizes due to CFG
for b in var.blocks:
b.attn.kv_caching(False)
b.cross_attn.kv_caching(False)
# de-normalize, from [-1, 1] to [0, 1]
img = vae.fhat_to_img(f_hat).add(1).mul(0.5)
if return_pil:
img = self.to_image(img)
return img