File size: 7,039 Bytes
8abcf2d
ef8c30b
834b1c6
8abcf2d
ef8c30b
8abcf2d
 
 
 
 
 
 
 
 
5d70faf
d65669a
 
 
 
 
 
 
 
 
 
 
 
5d70faf
 
 
 
 
 
 
 
 
dcb01bb
 
d65669a
dcb01bb
 
 
 
d65669a
 
 
 
 
 
dcb01bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65669a
 
 
 
 
 
 
 
 
 
 
 
 
ef8c30b
 
4483569
 
dcb01bb
 
5d70faf
dcb01bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65669a
 
 
 
dcb01bb
 
4483569
 
 
 
 
 
 
 
8abcf2d
4483569
 
 
 
 
ee7c71e
dcb01bb
 
 
 
 
8abcf2d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from transformers import AutoConfig  # Required for Hugging Face integration
from calc_params import calc_params  # Import calc_params from the new file

# ---- Helper Functions ---- #
def convert_params(params):
    if params == 0:
        return "0"
    size_name = ("", "K", "M", "B", "T", "P", "E", "Z", "Y")
    i = int(math.floor(math.log(params, 1000)))
    p = math.pow(1000, i)
    s = round(params / p, 2)
    return "%s %s" % (s, size_name[i])

# Get Hugging Face model configuration and update the parameters
def get_hf_model_args(hf_model_name_or_path):
    try:
        config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
    except Exception as e:
        return None, f"Error fetching Hugging Face model: {str(e)}"
    
    # Extract relevant values from the config
    num_layers = config.get("num_hidden_layers", None)
    hidden_size = config.get("hidden_size", None)
    num_attention_heads = config.get("num_attention_heads", None)
    vocab_size = config.get("vocab_size", None)
    sequence_length = config.get("max_position_embeddings", None)

    return {
        "num_layers": num_layers,
        "hidden_size": hidden_size,
        "num_attention_heads": num_attention_heads,
        "vocab_size": vocab_size,
        "sequence_length": sequence_length,
    }, None

# ---- Memory Calculation ---- #
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
    model_params, hf_error = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else (None, None)

    if hf_error:
        return hf_error
    
    if model_params:
        num_layers = model_params["num_layers"] or num_layers
        hidden_size = model_params["hidden_size"] or hidden_size
        num_attention_heads = model_params["num_attention_heads"] or num_attention_heads
        vocab_size = model_params["vocab_size"] or vocab_size
        sequence_length = model_params["sequence_length"] or sequence_length
    
    dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
    embed_params = 2 * vocab_size * hidden_size
    positional_params = hidden_size * sequence_length
    ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
    attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
    mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
    total_params = embed_params + positional_params + ln_params + attention_params + mlp_params

    bytes_per_param = 2 if is_mixed_precision else 4
    model_mem = total_params * bytes_per_param
    per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib

    return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"

# ---- Update Gradio inputs with Hugging Face model config ---- #
def update_from_hf_model(hf_model_name_or_path):
    model_params, hf_error = get_hf_model_args(hf_model_name_or_path)
    
    if hf_error:
        return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), hf_error
    
    return (gr.update(value=model_params["num_layers"]), 
            gr.update(value=model_params["hidden_size"]),
            gr.update(value=model_params["num_attention_heads"]),
            gr.update(value=model_params["vocab_size"]),
            gr.update(value=model_params["sequence_length"]),
            "")

# ---- Gradio Interface ---- #
with gr.Blocks() as demo:
    with gr.Tabs():
        # Memory Calculation Tab
        with gr.TabItem("Memory Calculation"):
            hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path (optional)", value="")
            num_gpus = gr.Number(label="Number of GPUs", value=1)
            tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1)
            pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1)
            batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8)
            sequence_length = gr.Number(label="Sequence Length", value=2048)
            vocab_size = gr.Number(label="Vocab Size", value=51200)
            hidden_size = gr.Number(label="Hidden Size", value=6144)
            num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
            num_layers = gr.Number(label="Number of Layers", value=44)
            ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
            is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True)
            misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)

            memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
            calc_memory_button = gr.Button("Calculate Memory")
            calc_memory_button.click(calc_mem, 
                inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], 
                outputs=memory_result)

            hf_model_name_or_path.change(fn=update_from_hf_model, 
                inputs=[hf_model_name_or_path], 
                outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result])

        # Parameter Calculation Tab
        with gr.TabItem("Parameter Calculation"):
            vocab_size = gr.Number(label="Vocab Size", value=51200)
            tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
            hidden_size = gr.Number(label="Hidden Size", value=6144)
            sequence_length = gr.Number(label="Sequence Length", value=2048)
            num_layers = gr.Number(label="Number of Layers", value=44)
            ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
            num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
            kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)

            with gr.Accordion("MoE Parameters", open=False):
                moe = gr.Checkbox(label="MoE", value=False)
                num_experts = gr.Number(label="Number of Experts", value=8)
                expert_interval = gr.Number(label="Expert Interval", value=1)
                topk = gr.Number(label="Top k Routing", value=1)

            param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
            calc_param_button = gr.Button("Calculate Parameters")
            calc_param_button.click(calc_params, 
                inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], 
                outputs=param_result)

demo.launch()