File size: 18,787 Bytes
c25e2cc
3cdacdf
078a9c5
3cdacdf
5cb2cc0
3cdacdf
 
 
6255790
 
5e25b83
6255790
98c6b44
c25e2cc
dbc34e0
 
 
6255790
 
 
 
 
 
 
 
 
 
 
 
 
e79152d
 
6255790
 
 
09eb804
6255790
 
 
6a2fd41
6255790
 
 
 
 
e79152d
 
6255790
 
 
 
 
5e25b83
af56f98
5e25b83
9b96547
f55706c
27e096e
6255790
7f61c74
 
 
fd93e8a
 
 
 
 
 
 
033681c
fd93e8a
 
 
 
7f61c74
b12e6a1
 
 
33f6feb
 
 
033681c
33f6feb
 
b12e6a1
b13a3d4
 
 
 
 
33f6feb
 
 
033681c
33f6feb
 
b13a3d4
652f06c
 
2331708
652f06c
 
33f6feb
 
 
033681c
33f6feb
 
652f06c
7f61c74
 
9cd2450
6a5a59b
 
 
 
 
 
 
 
9cd2450
6a5a59b
 
 
 
 
 
f02e93c
6a5a59b
f02e93c
 
 
 
27ec4ac
6a5a59b
 
017df60
7593f04
 
017df60
05f89f0
 
 
017df60
05f89f0
6a5a59b
017df60
9cd2450
add968e
b4d4a0c
9df32ef
a217b80
7593f04
db41b3f
a217b80
 
 
7593f04
6a5a59b
7b3a214
6255790
9cd2450
017df60
7593f04
257ea11
 
de47faa
257ea11
 
 
 
 
 
3cc82a2
bc09c01
7cbd357
88f076f
98c6b44
a02e0e3
 
 
5e25b83
257ea11
 
 
 
 
5e25b83
7b3a214
 
5e25b83
017df60
7b3a214
1a248f3
3489b04
017df60
9cd2450
6255790
9156300
b4d4a0c
9156300
88f076f
 
 
 
db50056
660a4aa
393519b
3489b04
393519b
aefef30
 
 
c635e15
1ff3548
 
3489b04
 
7bb8383
a9bc524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bccbcd8
017df60
c6ff99b
 
 
 
 
 
6a5a59b
 
27ec4ac
 
 
6a5a59b
 
017df60
 
 
6d75eb4
 
7bb8383
017df60
 
 
65837e4
6a5a59b
6d75eb4
 
 
77d316c
f948a49
6a5a59b
d58e1aa
e2d7d01
c2870fd
e2d7d01
77d316c
c6ff99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033681c
0235960
c6ff99b
65837e4
c6ff99b
33984db
c6ff99b
33984db
c6ff99b
33984db
 
 
c6ff99b
 
 
033681c
0235960
c6ff99b
33984db
c6ff99b
 
 
33984db
c6ff99b
33984db
 
 
c6ff99b
 
 
033681c
0235960
c6ff99b
33984db
 
 
 
 
 
c6ff99b
 
6a5a59b
7b3a214
 
7bb8383
 
7b3a214
d0c1ebf
7b3a214
 
7bb8383
b885715
c6ff99b
 
 
 
 
 
 
 
6d75eb4
c6ff99b
 
 
 
3085850
 
 
 
 
6a5a59b
8dbaab4
7bb8383
6a5a59b
27ec4ac
 
 
6a5a59b
 
f1471d4
 
 
6a5a59b
 
 
a217b80
7b3a214
3cc1754
 
580b93b
 
6a5a59b
9cd2450
7593f04
 
017df60
 
 
 
 
 
6a5a59b
9cd2450
7b3a214
6a5a59b
7b3a214
 
 
 
 
 
 
 
257ea11
 
 
 
 
9cd2450
7b3a214
6d75eb4
6a5a59b
 
 
7b3a214
017df60
6a5a59b
 
6d75eb4
017df60
 
6d75eb4
 
40c1596
6d75eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ed7f3
6d75eb4
 
277aca5
d8ed7f3
6d75eb4
 
d8ed7f3
6d75eb4
 
277aca5
3085850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f61c74
3489b04
 
a93910d
b30a076
3489b04
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import gradio as gr
import torch
import numpy as np
import requests
import random
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
import re




def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):

  #  inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf, 
  #  based on the code in https://github.com/inbarhub/DDPM_inversion
   
  #  returns wt, zs, wts:
  #  wt - inverted latent
  #  wts - intermediate inverted latents
  #  zs - noise maps

  sd_pipe.scheduler.set_timesteps(num_diffusion_steps)

  # vae encode image
  with autocast("cuda"), inference_mode():
      w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()

  # find Zs and wts - forward process
  wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
  return zs, wts



def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):

    # reverse process (via Zs and wT)
    w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
    
    # vae decode image
    with autocast("cuda"), inference_mode():
        x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
    if x0_dec.dim()<4:
        x0_dec = x0_dec[None,:,:,:]
    img = image_grid(x0_dec)
    return img

# load pipelines
sd_model_id = "stabilityai/stable-diffusion-2-base"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)


def get_example():
    case = [
        [
            'examples/source_a_cat_sitting_next_to_a_mirror.jpeg', 
            'a cat sitting next to a mirror',
            'watercolor painting of a cat sitting next to a mirror',
            100,
            36,
            15,
            'Schnauzer dog', 'cat',
            5.5,
            1,
            'examples/ddpm_sega_watercolor_painting_a_cat_sitting_next_to_a_mirror_plus_dog_minus_cat.png'
             ],
        [
            'examples/source_a_man_wearing_a_brown_hoodie_in_a_crowded_street.jpeg', 
            'a man wearing a brown hoodie in a crowded street',
            'a robot wearing a brown hoodie in a crowded street',
            100,
            36,
            15,
            'painting','',
            10,
            1,
            'examples/ddpm_sega_painting_of_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png'
             ],
    [
            'examples/source_wall_with_framed_photos.jpeg', 
            '',
            '',
            100,
            36,
            15,
            'pink drawings of muffins','',
            10,
            1,
            'examples/ddpm_sega_plus_pink_drawings_of_muffins.png'
             ],
    [
            'examples/source_an_empty_room_with_concrete_walls.jpg', 
            'an empty room with concrete walls',
            'glass walls',
            100,
            36,
            17,
            'giant elephant','',
            10,
            1,
            'examples/ddpm_sega_glass_walls_gian_elephant.png'
             ]]
    return case

def randomize_seed_fn(seed, randomize_seed):
    if randomize_seed:
        seed = random.randint(0, np.iinfo(np.int32).max)
    torch.manual_seed(seed)
    return seed


    

def reconstruct(tar_prompt, 
                tar_cfg_scale, 
                skip, 
                wts, zs, 
                # do_reconstruction, 
                # reconstruction
               ):
    

    # if do_reconstruction:
    reconstruction = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
    return reconstruction

    
def load_and_invert(
                    input_image, 
                    do_inversion,
                    seed, randomize_seed,
                    wts, zs, 
                    src_prompt ="", 
                    tar_prompt="", 
                    steps=100,
                    src_cfg_scale = 3.5,
                    skip=36,
                    tar_cfg_scale=15
                    
):

    
    x0 = load_512(input_image, device=device)
    
    if do_inversion or randomize_seed:
        # invert and retrieve noise maps and latent
        zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
        wts = gr.State(value=wts_tensor)
        zs = gr.State(value=zs_tensor)
        do_inversion = False
        
    return wts, zs, do_inversion

    
def edit(input_image,
            wts, zs, 
            tar_prompt, 
            steps,
            skip,
            tar_cfg_scale,
            edit_concept_1,edit_concept_2,edit_concept_3,
            guidnace_scale_1,guidnace_scale_2,guidnace_scale_3,
            warmup_1, warmup_2, warmup_3,
            neg_guidance_1, neg_guidance_2, neg_guidance_3,
            threshold_1, threshold_2, threshold_3

   ):
       
    # SEGA
    # parse concepts and neg guidance 

    
    
    editing_args = dict(
    editing_prompt = [edit_concept_1,edit_concept_2,edit_concept_3],
    reverse_editing_direction = [ neg_guidance_1, neg_guidance_2, neg_guidance_3,],
    edit_warmup_steps=[warmup_1, warmup_2, warmup_3,],
    edit_guidance_scale=[guidnace_scale_1,guidnace_scale_2,guidnace_scale_3], 
    edit_threshold=[threshold_1, threshold_2, threshold_3],
    edit_momentum_scale=0.5, 
    edit_mom_beta=0.6,
    eta=1,
  )
    latnets = wts.value[skip].expand(1, -1, -1, -1)
    sega_out = sem_pipe(prompt=tar_prompt, latents=latnets, guidance_scale = tar_cfg_scale,
                        num_images_per_prompt=1,  
                        num_inference_steps=steps, 
                        use_ddpm=True,  wts=wts.value, zs=zs.value[skip:], **editing_args)
    return sega_out.images[0]




########
# demo #
########
                        
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
   Edit Friendly DDPM X Semantic Guidance
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> X
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""

help_text = """
- **Getting Started - edit images with DDPM X SEGA:**
    
    The are 3 general setting options you can play with - 
    
    1. **Pure DDPM Edit -** Describe the desired edited output image in detail
    2. **Pure SEGA Edit -** Keep the target prompt empty ***or*** with a description of the original image and add editing concepts for Semantic Gudiance editing 
    3. **Combined -** Describe the desired edited output image in detail and add additional SEGA editing concepts on top 
- **Getting Started - Tips**
    
    While the best approach depends on your editing objective and source image,  we can layout a few guiding tips to use as a starting point -
    
    1. **DDPM** is usually more suited for scene/style changes and major subject changes (for example ) while **SEGA** allows for more fine grained control, changes are more delicate, more suited for adding details (for example facial expressions and attributes, subtle style modifications, object adding/removing)
    2. The more you describe the scene in the target prompt (both the parts and details you wish to keep the same and those you wish to change), the better the result 
    3. **Combining DDPM Edit with SEGA -** 
    Try dividing your editing objective to more significant scene/style/subject changes and detail adding/removing and more moderate changes. Then describe the major changes in a detailed target prompt and add the more fine grained details as SEGA concepts. 
    4. **Reconstruction:** Using an empty source prompt + target prompt will lead to a perfect reconstruction
- **Fidelity vs creativity**:
    
    Bigger values → more fidelity, smaller values → more creativity
    
    1. `Skip Steps` 
    2. `Warmup` (SEGA)
    3. `Threshold`  (SEGA)
    
    Bigger values → more creativity, smaller values → more fidelity
    
    1. `Guidance Scale`
    2. `Concept Guidance Scale` (SEGA)
"""

with gr.Blocks(css='style.css') as demo:
    
    def add_concept(sega_concepts_counter):
      if sega_concepts_counter == 1:
        return row2.update(visible=True), row3.update(visible=False), plus.update(visible=True), 2
      else:
        return row2.update(visible=True), row3.update(visible=True), plus.update(visible=False), 3

    def show_reconstruction_option():
        return reconstruct_button.update(visible=True)

    def show_reconstruction():
        return ddpm_edited_image.update(visible=True)
        
        
    def reset_do_inversion():
        do_inversion = True
        return do_inversion

        
    gr.HTML(intro)
    wts = gr.State()
    zs = gr.State()
    do_inversion = gr.State(value=True)
    sega_concepts_counter = gr.State(1)
    # reconstruction = gr.State()
    

    
    with gr.Row():
        input_image = gr.Image(label="Input Image", interactive=True)
        ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False, visible=False)
        sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False)
        input_image.style(height=365, width=365)
        ddpm_edited_image.style(height=365, width=365)
        sega_edited_image.style(height=365, width=365)

    with gr.Tabs() as tabs:
          with gr.TabItem('1. Describe the desired output', id=0):
            with gr.Row().style(mobile_collapse=False, equal_height=True):
              tar_prompt = gr.Textbox(
                                label="Edit Concept",
                                show_label=False,
                                max_lines=1,
                                placeholder="Enter your 1st edit prompt",
                            )
          with gr.TabItem('2. Add SEGA edit concepts', id=1):
            # with gr.Group():
              with gr.Row().style(mobile_collapse=False, equal_height=True):
                  # tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
                  neg_guidance_1 = gr.Checkbox(
                      label='Negative Guidance')
                  warmup_1 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=1, step=1, interactive=True)
                  guidnace_scale_1 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=15, value=5, step=0.25, interactive=True)
                  threshold_1 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01, interactive=True)
                  edit_concept_1 = gr.Textbox(
                                  label="Edit Concept",
                                  show_label=False,
                                  max_lines=1,
                                  placeholder="Enter your 1st edit prompt",
                              )
              
              with gr.Row(visible=False) as row2:
                 
                  # tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
                  neg_guidance_2 = gr.Checkbox(
                      label='Negative Guidance',visible=True)
                  warmup_2 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=1, step=1, visible=True,interactive=True)
                  guidnace_scale_2 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=15, value=5, step=0.25,visible=True, interactive=True)
                  threshold_2 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01,visible=True, interactive=True)
                  edit_concept_2 = gr.Textbox(
                                  label="Edit Concept",
                                  show_label=False,visible=True,
                                  max_lines=1,
                                  placeholder="Enter your 2st edit prompt",
                              )
              
              with gr.Row(visible=False) as row3:
                  
                  # tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
                  neg_guidance_3 = gr.Checkbox(
                      label='Negative Guidance',visible=True)
                  warmup_3 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=1, step=1, visible=True,interactive=True)
                  guidnace_scale_3 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=15, value=5, step=0.25,visible=True, interactive=True)
                  threshold_3 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01,visible=True, interactive=True)
                  edit_concept_3 = gr.Textbox(
                                  label="Edit Concept",
                                  show_label=False,visible=True,
                                  max_lines=1,
                                  placeholder="Enter your 3rd edit prompt",
                              )
              
              with gr.Row().style(mobile_collapse=False, equal_height=True):
                add_concept_button = gr.Button("+")

                      
    with gr.Row():
        with gr.Column(scale=1, min_width=100):
            run_button = gr.Button("Run")
            reconstruct_button = gr.Button("Show me the reconstruction", visible=False)
        # with gr.Column(scale=1, min_width=100):
        #     edit_button = gr.Button("Edit")

    with gr.Accordion("Advanced Options", open=False):
            with gr.Row():
                with gr.Column():
                    src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
                    steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
                    src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True)
                    seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
                    randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
                with gr.Column():    
                    skip = gr.Slider(minimum=0, maximum=60, value=36, label="Skip Steps", interactive=True)
                    tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)  



    with gr.Accordion("Help", open=False):
        gr.Markdown(help_text)
    
    
    
    add_concept_button.click(fn = add_concept, inputs=sega_concepts_counter,
               outputs= [row2, row3, add_concept_button, sega_concepts_counter], queue = False)

    reconstruct_button.click(
        fn = show_reconstruction,
        outputs = [ddpm_edited_image]
    ).then(
        fn = reconstruct,
        inputs = [tar_prompt, 
                  tar_cfg_scale, 
                  skip, 
                  wts, zs],
        outputs = [ddpm_edited_image]
    )

    
    run_button.click(
        fn = randomize_seed_fn,
        inputs = [seed, randomize_seed],
        outputs = [seed], 
        queue = False).then(
        fn=load_and_invert,
        inputs=[input_image, 
                do_inversion,
                seed, randomize_seed,
                wts, zs, 
                src_prompt, 
                tar_prompt, 
                steps,
                src_cfg_scale,
                skip,
                tar_cfg_scale         
        ],
        outputs=[wts, zs, do_inversion],

    ).success(
        fn=edit,
        inputs=[input_image, 
                wts, zs, 
                tar_prompt, 
                steps,
                skip,
                tar_cfg_scale,
                edit_concept_1,edit_concept_2,edit_concept_3,
                guidnace_scale_1,guidnace_scale_2,guidnace_scale_3,
                warmup_1, warmup_2, warmup_3,
                neg_guidance_1, neg_guidance_2, neg_guidance_3,
                threshold_1, threshold_2, threshold_3

        ],
        outputs=[sega_edited_image],     
    ).success( 
        fn = show_reconstruction_option,
        outputs = [reconstruct_button]
    )

    

    # Automatically start inverting upon input_image change
    input_image.change(
        fn = reset_do_inversion,
        outputs = [do_inversion], queue = False
    ).then(
        fn=load_and_invert,
        inputs=[input_image, 
                do_inversion,
                seed, randomize_seed,
                wts, zs, 
                src_prompt, 
                tar_prompt, 
                steps,
                src_cfg_scale,
                skip,
                tar_cfg_scale,          
        ],
        # outputs=[ddpm_edited_image, wts, zs, do_inversion],
        outputs=[wts, zs, do_inversion],
    )

    # Repeat inversion when these params are changed:
    src_prompt.change(
        fn = reset_do_inversion,
        outputs = [do_inversion], queue = False
    )
    steps.change(fn = reset_do_inversion,
        outputs = [do_inversion], queue = False)

    src_cfg_scale.change(fn = reset_do_inversion,
        outputs = [do_inversion], queue = False)
    

    gr.Examples(
        label='Examples', 
        examples=get_example(), 
        inputs=[input_image, src_prompt, tar_prompt, steps,
                    # src_cfg_scale,
                    skip,
                    tar_cfg_scale,
                    edit_concept_1,
                    edit_concept_2,
                    guidnace_scale_1,
                    warmup_1,
                    # neg_guidance,
                    sega_edited_image
               ],
        outputs=[sega_edited_image],
        # fn=edit,
        # cache_examples=True
    )



demo.queue()
demo.launch(share=False)