Spaces:
Running
on
A10G
Running
on
A10G
File size: 18,787 Bytes
c25e2cc 3cdacdf 078a9c5 3cdacdf 5cb2cc0 3cdacdf 6255790 5e25b83 6255790 98c6b44 c25e2cc dbc34e0 6255790 e79152d 6255790 09eb804 6255790 6a2fd41 6255790 e79152d 6255790 5e25b83 af56f98 5e25b83 9b96547 f55706c 27e096e 6255790 7f61c74 fd93e8a 033681c fd93e8a 7f61c74 b12e6a1 33f6feb 033681c 33f6feb b12e6a1 b13a3d4 33f6feb 033681c 33f6feb b13a3d4 652f06c 2331708 652f06c 33f6feb 033681c 33f6feb 652f06c 7f61c74 9cd2450 6a5a59b 9cd2450 6a5a59b f02e93c 6a5a59b f02e93c 27ec4ac 6a5a59b 017df60 7593f04 017df60 05f89f0 017df60 05f89f0 6a5a59b 017df60 9cd2450 add968e b4d4a0c 9df32ef a217b80 7593f04 db41b3f a217b80 7593f04 6a5a59b 7b3a214 6255790 9cd2450 017df60 7593f04 257ea11 de47faa 257ea11 3cc82a2 bc09c01 7cbd357 88f076f 98c6b44 a02e0e3 5e25b83 257ea11 5e25b83 7b3a214 5e25b83 017df60 7b3a214 1a248f3 3489b04 017df60 9cd2450 6255790 9156300 b4d4a0c 9156300 88f076f db50056 660a4aa 393519b 3489b04 393519b aefef30 c635e15 1ff3548 3489b04 7bb8383 a9bc524 bccbcd8 017df60 c6ff99b 6a5a59b 27ec4ac 6a5a59b 017df60 6d75eb4 7bb8383 017df60 65837e4 6a5a59b 6d75eb4 77d316c f948a49 6a5a59b d58e1aa e2d7d01 c2870fd e2d7d01 77d316c c6ff99b 033681c 0235960 c6ff99b 65837e4 c6ff99b 33984db c6ff99b 33984db c6ff99b 33984db c6ff99b 033681c 0235960 c6ff99b 33984db c6ff99b 33984db c6ff99b 33984db c6ff99b 033681c 0235960 c6ff99b 33984db c6ff99b 6a5a59b 7b3a214 7bb8383 7b3a214 d0c1ebf 7b3a214 7bb8383 b885715 c6ff99b 6d75eb4 c6ff99b 3085850 6a5a59b 8dbaab4 7bb8383 6a5a59b 27ec4ac 6a5a59b f1471d4 6a5a59b a217b80 7b3a214 3cc1754 580b93b 6a5a59b 9cd2450 7593f04 017df60 6a5a59b 9cd2450 7b3a214 6a5a59b 7b3a214 257ea11 9cd2450 7b3a214 6d75eb4 6a5a59b 7b3a214 017df60 6a5a59b 6d75eb4 017df60 6d75eb4 40c1596 6d75eb4 d8ed7f3 6d75eb4 277aca5 d8ed7f3 6d75eb4 d8ed7f3 6d75eb4 277aca5 3085850 7f61c74 3489b04 a93910d b30a076 3489b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import gradio as gr
import torch
import numpy as np
import requests
import random
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
import re
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
return zs, wts
def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "stabilityai/stable-diffusion-2-base"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
def get_example():
case = [
[
'examples/source_a_cat_sitting_next_to_a_mirror.jpeg',
'a cat sitting next to a mirror',
'watercolor painting of a cat sitting next to a mirror',
100,
36,
15,
'Schnauzer dog', 'cat',
5.5,
1,
'examples/ddpm_sega_watercolor_painting_a_cat_sitting_next_to_a_mirror_plus_dog_minus_cat.png'
],
[
'examples/source_a_man_wearing_a_brown_hoodie_in_a_crowded_street.jpeg',
'a man wearing a brown hoodie in a crowded street',
'a robot wearing a brown hoodie in a crowded street',
100,
36,
15,
'painting','',
10,
1,
'examples/ddpm_sega_painting_of_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png'
],
[
'examples/source_wall_with_framed_photos.jpeg',
'',
'',
100,
36,
15,
'pink drawings of muffins','',
10,
1,
'examples/ddpm_sega_plus_pink_drawings_of_muffins.png'
],
[
'examples/source_an_empty_room_with_concrete_walls.jpg',
'an empty room with concrete walls',
'glass walls',
100,
36,
17,
'giant elephant','',
10,
1,
'examples/ddpm_sega_glass_walls_gian_elephant.png'
]]
return case
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def reconstruct(tar_prompt,
tar_cfg_scale,
skip,
wts, zs,
# do_reconstruction,
# reconstruction
):
# if do_reconstruction:
reconstruction = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
return reconstruction
def load_and_invert(
input_image,
do_inversion,
seed, randomize_seed,
wts, zs,
src_prompt ="",
tar_prompt="",
steps=100,
src_cfg_scale = 3.5,
skip=36,
tar_cfg_scale=15
):
x0 = load_512(input_image, device=device)
if do_inversion or randomize_seed:
# invert and retrieve noise maps and latent
zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
do_inversion = False
return wts, zs, do_inversion
def edit(input_image,
wts, zs,
tar_prompt,
steps,
skip,
tar_cfg_scale,
edit_concept_1,edit_concept_2,edit_concept_3,
guidnace_scale_1,guidnace_scale_2,guidnace_scale_3,
warmup_1, warmup_2, warmup_3,
neg_guidance_1, neg_guidance_2, neg_guidance_3,
threshold_1, threshold_2, threshold_3
):
# SEGA
# parse concepts and neg guidance
editing_args = dict(
editing_prompt = [edit_concept_1,edit_concept_2,edit_concept_3],
reverse_editing_direction = [ neg_guidance_1, neg_guidance_2, neg_guidance_3,],
edit_warmup_steps=[warmup_1, warmup_2, warmup_3,],
edit_guidance_scale=[guidnace_scale_1,guidnace_scale_2,guidnace_scale_3],
edit_threshold=[threshold_1, threshold_2, threshold_3],
edit_momentum_scale=0.5,
edit_mom_beta=0.6,
eta=1,
)
latnets = wts.value[skip].expand(1, -1, -1, -1)
sega_out = sem_pipe(prompt=tar_prompt, latents=latnets, guidance_scale = tar_cfg_scale,
num_images_per_prompt=1,
num_inference_steps=steps,
use_ddpm=True, wts=wts.value, zs=zs.value[skip:], **editing_args)
return sega_out.images[0]
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM X Semantic Guidance
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> X
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
help_text = """
- **Getting Started - edit images with DDPM X SEGA:**
The are 3 general setting options you can play with -
1. **Pure DDPM Edit -** Describe the desired edited output image in detail
2. **Pure SEGA Edit -** Keep the target prompt empty ***or*** with a description of the original image and add editing concepts for Semantic Gudiance editing
3. **Combined -** Describe the desired edited output image in detail and add additional SEGA editing concepts on top
- **Getting Started - Tips**
While the best approach depends on your editing objective and source image, we can layout a few guiding tips to use as a starting point -
1. **DDPM** is usually more suited for scene/style changes and major subject changes (for example ) while **SEGA** allows for more fine grained control, changes are more delicate, more suited for adding details (for example facial expressions and attributes, subtle style modifications, object adding/removing)
2. The more you describe the scene in the target prompt (both the parts and details you wish to keep the same and those you wish to change), the better the result
3. **Combining DDPM Edit with SEGA -**
Try dividing your editing objective to more significant scene/style/subject changes and detail adding/removing and more moderate changes. Then describe the major changes in a detailed target prompt and add the more fine grained details as SEGA concepts.
4. **Reconstruction:** Using an empty source prompt + target prompt will lead to a perfect reconstruction
- **Fidelity vs creativity**:
Bigger values → more fidelity, smaller values → more creativity
1. `Skip Steps`
2. `Warmup` (SEGA)
3. `Threshold` (SEGA)
Bigger values → more creativity, smaller values → more fidelity
1. `Guidance Scale`
2. `Concept Guidance Scale` (SEGA)
"""
with gr.Blocks(css='style.css') as demo:
def add_concept(sega_concepts_counter):
if sega_concepts_counter == 1:
return row2.update(visible=True), row3.update(visible=False), plus.update(visible=True), 2
else:
return row2.update(visible=True), row3.update(visible=True), plus.update(visible=False), 3
def show_reconstruction_option():
return reconstruct_button.update(visible=True)
def show_reconstruction():
return ddpm_edited_image.update(visible=True)
def reset_do_inversion():
do_inversion = True
return do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
do_inversion = gr.State(value=True)
sega_concepts_counter = gr.State(1)
# reconstruction = gr.State()
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False, visible=False)
sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False)
input_image.style(height=365, width=365)
ddpm_edited_image.style(height=365, width=365)
sega_edited_image.style(height=365, width=365)
with gr.Tabs() as tabs:
with gr.TabItem('1. Describe the desired output', id=0):
with gr.Row().style(mobile_collapse=False, equal_height=True):
tar_prompt = gr.Textbox(
label="Edit Concept",
show_label=False,
max_lines=1,
placeholder="Enter your 1st edit prompt",
)
with gr.TabItem('2. Add SEGA edit concepts', id=1):
# with gr.Group():
with gr.Row().style(mobile_collapse=False, equal_height=True):
# tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
neg_guidance_1 = gr.Checkbox(
label='Negative Guidance')
warmup_1 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=1, step=1, interactive=True)
guidnace_scale_1 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=15, value=5, step=0.25, interactive=True)
threshold_1 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01, interactive=True)
edit_concept_1 = gr.Textbox(
label="Edit Concept",
show_label=False,
max_lines=1,
placeholder="Enter your 1st edit prompt",
)
with gr.Row(visible=False) as row2:
# tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
neg_guidance_2 = gr.Checkbox(
label='Negative Guidance',visible=True)
warmup_2 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=1, step=1, visible=True,interactive=True)
guidnace_scale_2 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=15, value=5, step=0.25,visible=True, interactive=True)
threshold_2 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01,visible=True, interactive=True)
edit_concept_2 = gr.Textbox(
label="Edit Concept",
show_label=False,visible=True,
max_lines=1,
placeholder="Enter your 2st edit prompt",
)
with gr.Row(visible=False) as row3:
# tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
neg_guidance_3 = gr.Checkbox(
label='Negative Guidance',visible=True)
warmup_3 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=1, step=1, visible=True,interactive=True)
guidnace_scale_3 = gr.Slider(label='Concept Guidance Scale', minimum=1, maximum=15, value=5, step=0.25,visible=True, interactive=True)
threshold_3 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01,visible=True, interactive=True)
edit_concept_3 = gr.Textbox(
label="Edit Concept",
show_label=False,visible=True,
max_lines=1,
placeholder="Enter your 3rd edit prompt",
)
with gr.Row().style(mobile_collapse=False, equal_height=True):
add_concept_button = gr.Button("+")
with gr.Row():
with gr.Column(scale=1, min_width=100):
run_button = gr.Button("Run")
reconstruct_button = gr.Button("Show me the reconstruction", visible=False)
# with gr.Column(scale=1, min_width=100):
# edit_button = gr.Button("Edit")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
with gr.Column():
skip = gr.Slider(minimum=0, maximum=60, value=36, label="Skip Steps", interactive=True)
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)
with gr.Accordion("Help", open=False):
gr.Markdown(help_text)
add_concept_button.click(fn = add_concept, inputs=sega_concepts_counter,
outputs= [row2, row3, add_concept_button, sega_concepts_counter], queue = False)
reconstruct_button.click(
fn = show_reconstruction,
outputs = [ddpm_edited_image]
).then(
fn = reconstruct,
inputs = [tar_prompt,
tar_cfg_scale,
skip,
wts, zs],
outputs = [ddpm_edited_image]
)
run_button.click(
fn = randomize_seed_fn,
inputs = [seed, randomize_seed],
outputs = [seed],
queue = False).then(
fn=load_and_invert,
inputs=[input_image,
do_inversion,
seed, randomize_seed,
wts, zs,
src_prompt,
tar_prompt,
steps,
src_cfg_scale,
skip,
tar_cfg_scale
],
outputs=[wts, zs, do_inversion],
).success(
fn=edit,
inputs=[input_image,
wts, zs,
tar_prompt,
steps,
skip,
tar_cfg_scale,
edit_concept_1,edit_concept_2,edit_concept_3,
guidnace_scale_1,guidnace_scale_2,guidnace_scale_3,
warmup_1, warmup_2, warmup_3,
neg_guidance_1, neg_guidance_2, neg_guidance_3,
threshold_1, threshold_2, threshold_3
],
outputs=[sega_edited_image],
).success(
fn = show_reconstruction_option,
outputs = [reconstruct_button]
)
# Automatically start inverting upon input_image change
input_image.change(
fn = reset_do_inversion,
outputs = [do_inversion], queue = False
).then(
fn=load_and_invert,
inputs=[input_image,
do_inversion,
seed, randomize_seed,
wts, zs,
src_prompt,
tar_prompt,
steps,
src_cfg_scale,
skip,
tar_cfg_scale,
],
# outputs=[ddpm_edited_image, wts, zs, do_inversion],
outputs=[wts, zs, do_inversion],
)
# Repeat inversion when these params are changed:
src_prompt.change(
fn = reset_do_inversion,
outputs = [do_inversion], queue = False
)
steps.change(fn = reset_do_inversion,
outputs = [do_inversion], queue = False)
src_cfg_scale.change(fn = reset_do_inversion,
outputs = [do_inversion], queue = False)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, src_prompt, tar_prompt, steps,
# src_cfg_scale,
skip,
tar_cfg_scale,
edit_concept_1,
edit_concept_2,
guidnace_scale_1,
warmup_1,
# neg_guidance,
sega_edited_image
],
outputs=[sega_edited_image],
# fn=edit,
# cache_examples=True
)
demo.queue()
demo.launch(share=False)
|