ledits / app.py
Linoy Tsaban
Update app.py
5e25b83
raw
history blame
4.02 kB
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
return wt, zs, wts
def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
def edit(input_image, input_image_prompt, target_prompt, edit_prompt,
guidance_scale=15, skip=36, num_diffusion_steps=100,
negative_guidance = False):
offsets=(0,0,0,0)
x0 = load_512(input_image, *offsets, device)
# invert
wt, zs, wts = invert(x0 =x0 , prompt_src=input_image_prompt, num_diffusion_steps=num_diffusion_steps)
latnets = wts[skip].expand(1, -1, -1, -1)
eta = 1
#pure DDPM output
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=target_prompt,
cfg_scale_tar=guidance_scale, skip=skip,
eta = eta)
editing_args = dict(
editing_prompt = [edit_prompt],
reverse_editing_direction = [negative_guidance],
edit_warmup_steps=[5],
edit_guidance_scale=[8],
edit_threshold=[.93],
edit_momentum_scale=0.5,
edit_mom_beta=0.6
)
sega_out = sem_pipe(prompt=target_prompt,eta=eta, latents=latnets,
num_images_per_prompt=1,
guidance_scale=edit_guidance_scale,
num_inference_steps=num_diffusion_steps_pure_ddpm,
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
return pure_ddpm_out,sega_out.images[0]
# See the gradio docs for the types of inputs and outputs available
inputs = [
gr.Image(label="input image", shape=(512, 512)),
gr.Textbox(label="input prompt"),
gr.Textbox(label="target prompt"),
gr.Textbox(label="SEGA edit prompt"),
gr.Slider(label="guidance scale", minimum=7, maximum=18, value=15),
gr.Slider(label="skip", minimum=0, maximum=40, value=36),
gr.Slider(label="num diffusion steps", minimum=0, maximum=300, value=100),
gr.Checkbox(label="SEGA negative_guidance"),
]
outputs = [gr.Image(label="DDPM"),gr.Image(label="DDPM+SEGA")]
# And the minimal interface
demo = gr.Interface(
fn=edit,
inputs=inputs,
outputs=outputs,
)
demo.launch() # debug=True allows you to see errors and output in Colab