Spaces:
Runtime error
Runtime error
File size: 2,356 Bytes
685ba0e a59a2c1 685ba0e a59a2c1 685ba0e a59a2c1 685ba0e a59a2c1 685ba0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from typing import Dict, Optional, Union
from transformers import (
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
BertTokenizer,
AutoTokenizer,
TokenClassificationPipeline,
)
from pipeline import NewsPipeline
CATEGORY_EMOJIS = {
"Automobile": "π",
"Entertainment": "πΏ",
"Politics": "βοΈ",
"Science": "π§ͺ",
"Sports": "π",
"Technology": "π»",
"World": "π",
}
FAKE_EMOJIS = {"Fake": "π»", "Real": "π"}
CLICKBAIT_EMOJIS = {"Clickbait": "π£", "Normal": "β
"}
class NewsAnalyzer:
def __init__(
self,
category_model_name: str,
fake_model_name: str,
clickbait_model_name: str,
ner_model_name: str,
) -> None:
self.category_pipe = NewsPipeline(
model=AutoModelForSequenceClassification.from_pretrained(
category_model_name
),
tokenizer=BertTokenizer.from_pretrained(category_model_name),
emojis=CATEGORY_EMOJIS,
)
self.fake_pipe = NewsPipeline(
model=AutoModelForSequenceClassification.from_pretrained(fake_model_name),
tokenizer=BertTokenizer.from_pretrained(fake_model_name),
emojis=FAKE_EMOJIS,
)
self.clickbait_pipe = NewsPipeline(
model=AutoModelForSequenceClassification.from_pretrained(
clickbait_model_name
),
tokenizer=BertTokenizer.from_pretrained(clickbait_model_name),
emojis=CLICKBAIT_EMOJIS,
)
self.ner_pipe = TokenClassificationPipeline(
model=AutoModelForTokenClassification.from_pretrained(ner_model_name),
tokenizer=AutoTokenizer.from_pretrained(ner_model_name),
aggregation_strategy="simple",
)
def __call__(
self, headline: str, content: Optional[str] = None
) -> Dict[str, Union[str, float]]:
return {
"category": self.category_pipe(headline=headline, content=content),
"fake": self.fake_pipe(headline=headline, content=content),
"clickbait": self.clickbait_pipe(headline=headline, content=None),
"ner": {
"headline": self.ner_pipe(headline),
"content": self.ner_pipe(content) if content else None,
},
}
|