rouge / README.md
lvwerra's picture
lvwerra HF staff
Update Space (evaluate main: 8b9373dc)
aaa0d50
---
title: ROUGE
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
---
# Metric Card for ROUGE
## Metric Description
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)
## How to Use
At minimum, this metric takes as input a list of predictions and a list of references:
```python
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references)
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
```
One can also pass a custom tokenizer which is especially useful for non-latin languages.
```python
>>> results = rouge.compute(predictions=predictions,
... references=references,
tokenizer=lambda x: x.split())
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
```
It can also deal with lists of references for each predictions:
```python
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = [["hello", "there"], ["general kenobi", "general yoda"]]
>>> results = rouge.compute(predictions=predictions,
... references=references)
>>> print(results)
{'rouge1': 0.8333, 'rouge2': 0.5, 'rougeL': 0.8333, 'rougeLsum': 0.8333}```
```
### Inputs
- **predictions** (`list`): list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
- **references** (`list` or `list[list]`): list of reference for each prediction or a list of several references per prediction. Each
reference should be a string with tokens separated by spaces.
- **rouge_types** (`list`): A list of rouge types to calculate. Defaults to `['rouge1', 'rouge2', 'rougeL', 'rougeLsum']`.
- Valid rouge types:
- `"rouge1"`: unigram (1-gram) based scoring
- `"rouge2"`: bigram (2-gram) based scoring
- `"rougeL"`: Longest common subsequence based scoring.
- `"rougeLSum"`: splits text using `"\n"`
- See [here](https://github.com/huggingface/datasets/issues/617) for more information
- **use_aggregator** (`boolean`): If True, returns aggregates. Defaults to `True`.
- **use_stemmer** (`boolean`): If `True`, uses Porter stemmer to strip word suffixes. Defaults to `False`.
### Output Values
The output is a dictionary with one entry for each rouge type in the input list `rouge_types`. If `use_aggregator=False`, each dictionary entry is a list of scores, with one score for each sentence. E.g. if `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=False`, the output is:
```python
{'rouge1': [0.6666666666666666, 1.0], 'rouge2': [0.0, 1.0]}
```
If `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=True`, the output is of the following format:
```python
{'rouge1': 1.0, 'rouge2': 1.0}
```
The ROUGE values are in the range of 0 to 1.
#### Values from Popular Papers
### Examples
An example without aggregation:
```python
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references,
... use_aggregator=False)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
[0.5, 0.0]
```
The same example, but with aggregation:
```python
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references,
... use_aggregator=True)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
0.25
```
The same example, but only calculating `rouge_1`:
```python
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references,
... rouge_types=['rouge_1'],
... use_aggregator=True)
>>> print(list(results.keys()))
['rouge1']
>>> print(results["rouge1"])
0.25
```
## Limitations and Bias
See [Schluter (2017)](https://aclanthology.org/E17-2007/) for an in-depth discussion of many of ROUGE's limits.
## Citation
```bibtex
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
```
## Further References
- This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)