rouge / README.md
julien-c's picture
julien-c HF staff
Add description to card metadata
2d6aff4
|
raw
history blame
6.86 kB
metadata
title: ROUGE
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
  - evaluate
  - metric
description: >-
  ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of
  metrics and a software package used for

  evaluating automatic summarization and machine translation software in natural
  language processing.

  The metrics compare an automatically produced summary or translation against a
  reference or a set of references (human-produced) summary or translation.


  Note that ROUGE is case insensitive, meaning that upper case letters are
  treated the same way as lower case letters.


  This metrics is a wrapper around Google Research reimplementation of ROUGE:

  https://github.com/google-research/google-research/tree/master/rouge

Metric Card for ROUGE

Metric Description

ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.

Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.

This metrics is a wrapper around the Google Research reimplementation of ROUGE

How to Use

At minimum, this metric takes as input a list of predictions and a list of references:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results["rouge1"].mid.fmeasure)
1.0

Inputs

  • predictions (list): list of predictions to score. Each prediction should be a string with tokens separated by spaces.
  • references (list): list of reference for each prediction. Each reference should be a string with tokens separated by spaces.
  • rouge_types (list): A list of rouge types to calculate. Defaults to ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'].
    • Valid rouge types:
      • "rouge1": unigram (1-gram) based scoring
      • "rouge2": bigram (2-gram) based scoring
      • "rougeL": Longest common subsequence based scoring.
      • "rougeLSum": splits text using "\n"
      • See here for more information
  • use_aggregator (boolean): If True, returns aggregates. Defaults to True.
  • use_stemmer (boolean): If True, uses Porter stemmer to strip word suffixes. Defaults to False.

Output Values

The output is a dictionary with one entry for each rouge type in the input list rouge_types. If use_aggregator=False, each dictionary entry is a list of Score objects, with one score for each sentence. Each Score object includes the precision, recall, and fmeasure. E.g. if rouge_types=['rouge1', 'rouge2'] and use_aggregator=False, the output is:

{'rouge1': [Score(precision=1.0, recall=0.5, fmeasure=0.6666666666666666), Score(precision=1.0, recall=1.0, fmeasure=1.0)], 'rouge2': [Score(precision=0.0, recall=0.0, fmeasure=0.0), Score(precision=1.0, recall=1.0, fmeasure=1.0)]}

If rouge_types=['rouge1', 'rouge2'] and use_aggregator=True, the output is of the following format:

{'rouge1': AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)), 'rouge2': AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))}

The precision, recall, and fmeasure values all have a range of 0 to 1.

Values from Popular Papers

Examples

An example without aggregation:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
[Score(precision=0.5, recall=0.5, fmeasure=0.5), Score(precision=0.0, recall=0.0, fmeasure=0.0)]

The same example, but with aggregation:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references,
...                         use_aggregator=True)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=0.0, recall=0.0, fmeasure=0.0), mid=Score(precision=0.25, recall=0.25, fmeasure=0.25), high=Score(precision=0.5, recall=0.5, fmeasure=0.5))

The same example, but only calculating rouge_1:

>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
...                         references=references,
...                         rouge_types=['rouge_1'],
...                         use_aggregator=True)
>>> print(list(results.keys()))
['rouge1']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=0.0, recall=0.0, fmeasure=0.0), mid=Score(precision=0.25, recall=0.25, fmeasure=0.25), high=Score(precision=0.5, recall=0.5, fmeasure=0.5))

Limitations and Bias

See Schluter (2017) for an in-depth discussion of many of ROUGE's limits.

Citation

@inproceedings{lin-2004-rouge,
    title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
    author = "Lin, Chin-Yew",
    booktitle = "Text Summarization Branches Out",
    month = jul,
    year = "2004",
    address = "Barcelona, Spain",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W04-1013",
    pages = "74--81",
}

Further References